Tag Archives: bearings bearing bearing

China high quality Yoke Type Track Roller Bearings Nutr35, Nutr3580, Nutr40, Nutr4090, Nutr45, Nutr45100, Nutr50, Nutr50110 carrier bearing

Product Description

Needle roller bearings contain many slender rollers with a length 3 to 10 times their diameter. Therefore, the ratio of the bearing outside diameter to the inscribed circle diameter is small, and they have a rather high radial load capacity. There are numerous types available, and many have no inner rings. The drawn-cup type has a pressed steel outer ring and the solid type has a machined outer ring. There are also cage-and-roller assemblies without rings. Most bearings have pressed steel cages, but some are without cages.
 

Model Number HK series, BK series, HK…RS series, HK…2RS series, BK…RS series, F series, FH series, MF series,  
HF series, CZPT series, K series, K…ZW series, KZK series, series, NK series, NKS series, RNA49 series,
RNA69 series, NKI series, NKIS series, NA49 series, NA69 series, NA48 series, NAO series, RNAO series,
RNA49…RS series, RNA49… 2RS series, RNAV series, NAV series, RPNA series, PNA series, IR series,
LR series, AXK series, AXW series, RSTO series, STO series, RNA2200 series, RNA2200…2RS series,
NA2200 series, NATR series, NATV series, NUTR series, PWTR series, NNTR series, KR series, KRE series,
KRV series, NUKR series, NUKRE series, PWKR series, PWKRE series.
Type needle roller bearing.
Number of Row single row, double row, multi row.
Material supreme chrome steel 100Cr6.
Cage Material steel, brass, nylon.
Hardness HRC 60-64.
Precision Rating P0, P6, P5.
Radial Clearance C0, C2, C3, C4, C5.
Sealing Type open, 2RS.
Grease as per your requirement, such as Chevron SRI-2 ,Multemp PS2, Shell Alvania R2, Changcheng 2 and so on.
Certification ISO 9001:2008.
Mark TIK or your mark.
Package single box package, industrial rolled package or as per buyer’s requirement.
Place of Origin China (Mainland).
Features (1) high precision;
(2) high speed;
(3) high load carrying capacity;
(4) low noise;
(5) long life span.
Application transport machinery, CNC machine, sewing machinery, handcart, physical exercise apparatus, motorcycle,
automobile, electric tool, leisure toys, textile machinery, printing machinery etc.
Payment Term  30% deposit, 70% is paid by TT or L/C or Western Union.
Shipment time ready stock, immediate shipment.
Shipping Port ZheJiang , ZheJiang or HangZhou.
Samples free samples are available.

 

Items d D B
  mm mm mm
NUTR15 15 35 19
NUTR1542 15 42 19
NUTR17 17 40 21
NUTR1747 17 47 21
NUTR20 20 47 25
NUTR2052 20 52 25
NUTR25 25 52 25
NUTR2562 25 62 25
NUTR30 30 62 29
NUTR3072 30 72 29
NUTR35 35 72 29
NUTR3580 35 80 29
NUTR40 40 80 32
NUTR4090 40 90 32
NUTR45 45 85 32
NUTR45100 45 100 32
NUTR50 50 90 32
NUTR50110 50 110 32

 

Packaging & Shipping

 

 

FAQ

 

FAQ

Q1: Are you a manufacturer or a trading company?
A: We have been a professional manufacturer of bearings since 1995 with ISO9001:2015 certificate.

Q2: How is the quality level of your bearings?
A: Our bearings are made of supreme GCr15 bearing steel and are produced with the first class workmanship. The tolerance grade could be P0, P6, P5, P4. The vibration level could be Z1V1, Z2V2, Z3V3.

Q3: Can I get samples to see the quality?
A: Yes, samples are free, but the courier charge shall be borne by the buyer.

Q4: Could you offer OEM service and print my logo/mark on the products?
A: Yes, we could. Please send us your mark registration files, we shall print your logo/mark on the bearings and package.

Q5: How is the lead time?
A: For regular items that are in stock, we could make shipment immediately right after your payment. If the goods are not in stock, our production time is from 15 to 45 days according to the quantity.

Q6: What if I receive defective product for my order?
A: All our bearings are 100% inspected strictly before packing. If you receive any defective product, please provide us photos or videos to show the problem. After confirmation, we shall send you the new product as replacement free of charge.

Q7: What is your term of payment?
A: Term of payment is negotiable. Usually it is 30% deposit in advance, and the balance 70% is paid when the goods are ready for shipment.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Single
Outer Dimension: Small and Medium-Sized (60-115mm)
Material: Bearing Steel
Spherical: Non-Aligning Bearings
Load Direction: Radial Bearing
Customization:
Available

|

Customized Request

track bearing

Can you provide examples of industries and applications where track bearings are frequently used?

Track bearings find extensive use in various industries and applications where smooth and controlled motion along tracks or guide rails is required. Let’s explore some examples of industries and applications where track bearings are frequently used:

  • Material Handling and Conveying: Track bearings are widely employed in material handling and conveying systems, such as conveyor belts, roller conveyors, and overhead cranes. They facilitate the smooth movement of goods, packages, and components along the tracks, ensuring efficient and reliable transportation within warehouses, distribution centers, manufacturing facilities, and airports.
  • Automotive and Transportation: Track bearings are utilized in various automotive applications, including suspension systems, steering systems, and sliding doors. They enable smooth and precise movement of components, contributing to vehicle performance, comfort, and safety. Additionally, track bearings are used in railway applications, such as railcar doors, sliding mechanisms, and track guidance systems.
  • Aerospace and Defense: Track bearings play a crucial role in aerospace and defense applications, including aircraft landing gears, flap systems, and missile launchers. They provide the necessary support, guidance, and load-carrying capacity for critical components, ensuring smooth and controlled motion in demanding operating conditions.
  • Industrial Machinery: Track bearings are commonly found in various industrial machinery and equipment. They are used in machine tools, robotics, printing presses, industrial ovens, and packaging machines, among others. In these applications, track bearings contribute to precise motion control, accurate positioning, and reliable performance of moving components.
  • Construction and Mining: Track bearings are extensively employed in construction and mining equipment, such as excavators, bulldozers, cranes, and drilling machines. They provide support and guidance for the movable parts, allowing efficient and controlled movement in rugged and demanding environments.
  • Medical and Healthcare: Track bearings are utilized in various medical and healthcare applications. They are used in hospital beds, medical imaging equipment, laboratory automation systems, and patient handling devices. Track bearings enable smooth and quiet operation, precise positioning, and patient comfort in these critical healthcare settings.
  • Renewable Energy: Track bearings are employed in renewable energy systems, including solar tracking systems and wind turbine pitch and yaw mechanisms. They enable the precise tracking of solar panels and the controlled adjustment of wind turbine blades, maximizing energy capture and optimizing system performance.

These examples represent just a fraction of the many industries and applications where track bearings are frequently used. The versatility, reliability, and precise motion control provided by track bearings make them a fundamental component in numerous mechanical systems across various sectors.

track bearing

Are there potential challenges or limitations in using track bearings in specific industries?

While track bearings are widely used in various industries for their ability to support linear motion and handle heavy loads, there can be potential challenges and limitations associated with their use in specific industries. Here’s a detailed explanation:

1. Contamination and Harsh Environments:

Industries such as mining, construction, and agriculture often operate in harsh environments with high levels of contamination, including dust, dirt, and moisture. These contaminants can enter the track bearings and cause accelerated wear, reduced performance, and potential failure. Regular maintenance and appropriate sealing measures are required to mitigate these challenges.

2. High-Temperature Environments:

In industries like metal processing, glass manufacturing, and foundries, track bearings may be exposed to high temperatures. Excessive heat can affect the lubrication properties and structural integrity of bearings, leading to premature failure. Selecting track bearings specifically designed for high-temperature applications and using suitable lubricants are necessary to overcome this limitation.

3. Corrosive Chemicals:

Industries such as chemical processing, food and beverage, and wastewater treatment involve exposure to corrosive chemicals. Corrosion can significantly affect the performance and lifespan of track bearings. Choosing bearings made from corrosion-resistant materials or applying protective coatings can help address this challenge.

4. Heavy Load and Impact:

Industries like material handling, mining, and construction often require track bearings to withstand heavy loads and frequent impacts. Excessive load or impact can lead to premature wear, deformation, or even catastrophic failure of the bearings. Selecting track bearings with appropriate load capacities and impact resistance is crucial in these industries.

5. Precision and Accuracy:

In industries such as robotics, semiconductor manufacturing, and precision machining, track bearings may need to meet stringent requirements for precision and accuracy. Any deviation or play in the bearings can impact the overall performance and quality of the process. Using high-precision track bearings and ensuring proper alignment and installation are essential in these cases.

6. Speed and Acceleration:

Applications involving high-speed or rapid acceleration, such as automated assembly lines or conveyor systems, can impose additional challenges on track bearings. Excessive speed or acceleration can generate heat and vibration, leading to increased wear and reduced bearing life. Choosing track bearings with suitable speed and acceleration ratings is vital in these industries.

It is important to consult with bearing manufacturers or industry experts to identify and address any potential challenges or limitations specific to the industry and application at hand. By understanding these challenges and selecting track bearings designed to overcome them, industries can optimize performance, reliability, and longevity while mitigating risks and ensuring smooth operation.

track bearing

What are track bearings, and how are they used in various applications?

Track bearings, also known as track rollers or track follower bearings, are specialized rolling bearings designed to operate in track-based systems. They are used in various applications that require guided linear or rotational motion. Let’s explore in detail the characteristics of track bearings and their common applications:

  • Design and Construction: Track bearings typically consist of an outer ring, an inner ring, a set of rolling elements (such as rollers or needles), and a cage that holds the rolling elements together. The outer ring features a track or guide surface, while the inner ring is mounted on a shaft or stud. The rolling elements facilitate smooth rolling motion along the track, allowing for linear or rotational movement.
  • Guided Motion: Track bearings are primarily used to provide guided motion in applications where components need to move along a defined path or track. The outer ring’s track surface interfaces with the track or guide rail, ensuring precise and controlled motion. This guided motion is crucial in various applications such as material handling systems, conveyors, cam mechanisms, and automated machinery.
  • Load Support: Track bearings are designed to support and distribute loads, both radial and axial, in track-based systems. They can handle substantial loads while maintaining smooth motion and minimizing friction. The load-carrying capacity of track bearings makes them suitable for applications involving heavy loads, such as construction equipment, agricultural machinery, and industrial automation systems.
  • Multiple Types: Track bearings come in various types to suit different application requirements. Some common types include yoke type track rollers, stud type track rollers, and cam followers. Yoke type track rollers have thick outer rings and can withstand high radial loads. Stud type track rollers have a stud instead of an inner ring and are suitable for applications with limited space. Cam followers have a stud with a built-in roller and are commonly used in cam-driven systems.
  • Sealing and Contamination Protection: In many applications, track bearings are exposed to harsh environments and contaminants. To ensure reliable operation, track bearings often incorporate sealing arrangements or protective coatings. These features help prevent the ingress of dust, dirt, moisture, or other contaminants, prolonging the bearing’s service life and reducing the risk of premature failure.
  • Various Applications: Track bearings find applications in a wide range of industries and systems. Some common applications include:
    • Material Handling Systems: Track bearings are used in conveyors, roller tracks, and overhead cranes to facilitate smooth and guided movement of materials.
    • Automated Machinery: Track bearings are employed in automated machines and robotic systems for precise motion control and positioning.
    • Cam Mechanisms: Track bearings are utilized in cam-driven systems, where they follow the profile of the cam and translate the rotary motion into linear or oscillating motion.
    • Construction Equipment: Track bearings are found in construction machinery, such as excavators, bulldozers, and compactors, to support the tracks or guide wheels.
    • Agricultural Machinery: Track bearings are used in agricultural equipment, including tractors, combines, and harvesters, to support the tracks or guide wheels and provide reliable movement.
    • Printing and Packaging Machinery: Track bearings are employed in printing presses, packaging machines, and labeling systems to ensure precise and guided movement of the printing heads, packaging materials, or labels.

In summary, track bearings are specialized rolling bearings designed for guided linear or rotational motion along a track or guide rail. They provide precise motion control, support substantial loads, and find applications in various industries such as material handling, automation, construction, agriculture, printing, and packaging. With their ability to facilitate guided motion and handle significant loads, track bearings contribute to the smooth and reliable operation of track-based systems in a wide range of applications.

China high quality Yoke Type Track Roller Bearings Nutr35, Nutr3580, Nutr40, Nutr4090, Nutr45, Nutr45100, Nutr50, Nutr50110   carrier bearingChina high quality Yoke Type Track Roller Bearings Nutr35, Nutr3580, Nutr40, Nutr4090, Nutr45, Nutr45100, Nutr50, Nutr50110   carrier bearing
editor by CX 2024-05-15

China manufacturer PMI MSA30S Linear Guide Rail Heavy Duty Track Rollers Bearings and Carriage deep groove ball bearing

Product Description

Product Description

PMI MSA30S Linear Xihu (West Lake) Dis. Rail Heavy Duty Track Rollers Bearings and Carriage
Features
The trains of balls are designed to a contact angle of 45° which enables it to bear an equal load in radial, reversed radial and lateral directions. Therefore, it can be applied in any installation direction. Furthermore, MSA series can achieve a well balanced preload for increasing rigidity in 4 directions while keeping a low frictional resistance. This is especially suit to high precision and high rigidity required motion.
The patent design of lubrication route makes the lubricant evenly distribute in each circulation loop. Therefore, the optimum lubrication can be achieved in any installation direction, and this promotes the performance in running accuracy, service life, and reliability.

Characteristics
• High Rigidity, Four-way Equal Load
• Self Alignment Capability
• Smooth Movement with Low Noise
• Interchangeability

Mode

PMI 

Material

Carbon Steel

   Related models     MSA15/20/25/30/35/45/55/65 S — LS

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Warehouse Crane, Shipboard Crane, Goods Yard Crane, Building Crane, Workshop Crane, CNC Machine
Material: Steel
Structure: CNC Machine
Installation: Automation Equipment
Driven Type:
Carrying Capacity: Weight Level
Samples:
US$ 29/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

track bearing

Can track bearings be customized or modified for specific track or linear motion applications?

Yes, track bearings can be customized or modified to meet specific requirements of track or linear motion applications. Manufacturers often offer a range of options and capabilities to tailor track bearings to the unique needs of different industries and applications. Here are some ways in which track bearings can be customized or modified:

  • Size and Dimensional Variations: Track bearings can be customized in terms of size, diameter, width, and overall dimensions to fit specific track or linear motion systems. Manufacturers can provide bearings with varying sizes and load capacities to accommodate different application requirements.
  • Material Selection: Track bearings can be manufactured from various materials depending on the specific application’s demands. Common materials include steel, stainless steel, ceramic, and polymer composites. Material selection can be customized to achieve desired properties such as corrosion resistance, high temperature tolerance, or low friction.
  • Sealing and Protection: In applications where track bearings are exposed to contaminants, moisture, or harsh environments, customized sealing and protection features can be added. These may include additional seals, shields, or coatings to enhance the bearing’s resistance to dust, water, chemicals, or extreme temperatures.
  • Lubrication Options: While self-lubricating or maintenance-free track bearings offer convenience, applications with specific lubrication requirements may benefit from customized lubrication options. Manufacturers can modify the bearing design to accommodate external lubrication systems or provide alternative lubrication methods to meet the unique demands of the application.
  • Specialized Load and Speed Ratings: In certain applications, track bearings may need to handle exceptionally high loads or operate at high speeds. Manufacturers can customize the bearing design to offer specialized load and speed ratings to ensure optimal performance and reliability in such demanding conditions.
  • Mounting and Attachment Options: Track bearings can be customized with different mounting and attachment options to facilitate easy installation and integration into specific track or linear motion systems. This may include variations in bolt hole patterns, flange designs, or specialized mounting arrangements.
  • Track Geometry Compatibility: Track bearings can be designed or modified to match specific track or guide rail geometries. This ensures proper fit, alignment, and smooth operation along the designated track, minimizing the risk of misalignment or issues related to track compatibility.

It is important to work closely with bearing manufacturers or suppliers to discuss the specific requirements of the track or linear motion application. By collaborating with experts, it is possible to customize or modify track bearings to optimize performance, reliability, and longevity in a wide range of applications.

track bearing

Can track bearings withstand harsh environments or exposure to contaminants?

Track bearings are designed to operate in a wide range of environments, including harsh conditions and exposure to contaminants. However, the ability of track bearings to withstand such environments depends on their specific design, materials, and protective measures. Here’s a detailed explanation:

Many track bearings are engineered with features that enhance their resistance to harsh environments and contaminants. These features may include:

  • Sealing and Shielding: Some track bearings are equipped with seals or shields that provide a physical barrier against contaminants such as dirt, dust, water, and debris. These seals or shields help prevent the entry of contaminants into the bearing’s internal components, reducing the risk of damage and premature wear.
  • Corrosion Resistance: Track bearings intended for use in corrosive environments are often constructed from materials that offer high corrosion resistance. Stainless steel, for example, is commonly used due to its ability to withstand exposure to moisture, chemicals, and other corrosive substances.
  • Specialized Coatings: Some track bearings may feature specialized coatings or surface treatments that provide additional protection against contaminants and harsh conditions. These coatings can enhance the bearing’s resistance to corrosion, abrasion, and chemical exposure.
  • High-Temperature Capability: Certain track bearings are designed to withstand high-temperature environments. They are typically constructed using heat-resistant materials and lubricants that can maintain their structural integrity and performance even under extreme heat.
  • Environmental Sealing: In applications where track bearings are exposed to extreme conditions, such as underwater or in highly dusty environments, special environmental sealing measures may be employed. These measures can include the use of advanced sealing technologies or the encapsulation of the bearings within protective housings.

While track bearings are designed to withstand harsh environments and exposure to contaminants, it is important to note that their performance and longevity can still be affected over time. Regular maintenance, including cleaning, inspection, and lubrication, is crucial to ensure proper functioning and to mitigate the impact of contaminants on the bearings.

It is recommended to consult the manufacturer’s specifications and guidelines for the track bearings being used in a specific application. Manufacturers often provide information on the environmental ratings and limits of their bearings, helping users determine the suitability of the bearings for particular harsh environments or exposure to contaminants.

By selecting track bearings with appropriate features, materials, and protection, and by implementing proper maintenance practices, it is possible to enhance the bearings’ ability to withstand harsh environments and exposure to contaminants, thereby maximizing their performance and longevity.

track bearing

How do track bearings compare to other types of bearings like ball bearings or roller bearings?

Track bearings, ball bearings, and roller bearings are all types of rolling bearings used in various applications. Let’s compare track bearings to ball bearings and roller bearings to understand their similarities and differences:

  • Design and Construction: Track bearings, ball bearings, and roller bearings have different designs and constructions. Track bearings, also known as track rollers or track follower bearings, are designed specifically for guided linear or rotational motion along a track or guide rail. They feature an outer ring with a track surface, an inner ring, rolling elements (such as rollers or needles), and a cage. Ball bearings, on the other hand, have spherical rolling elements (balls) sandwiched between inner and outer rings. Roller bearings, as the name suggests, have cylindrical or tapered rolling elements (rollers) between inner and outer rings.
  • Motion and Load Handling: Track bearings are primarily used for guided motion in track-based systems, while ball bearings and roller bearings are used for general rotational or linear motion. Track bearings are designed to support both radial and axial loads and provide smooth and controlled motion along the track. Ball bearings and roller bearings are also capable of supporting radial and axial loads but are typically used in applications where the motion is not constrained to a specific track or guide rail. Roller bearings, with their larger contact area and higher load-carrying capacity, are often preferred for applications with higher loads.
  • Applications: Track bearings are commonly used in applications such as material handling systems, conveyors, cam mechanisms, automated machinery, construction equipment, and agricultural machinery, where guided motion along a track or rail is required. Ball bearings and roller bearings find applications in a wide range of industries and systems, including electric motors, pumps, automotive applications, industrial machinery, and appliances.
  • Friction and Efficiency: Track bearings, ball bearings, and roller bearings all aim to minimize friction and ensure efficient operation. However, due to their different designs and contact surfaces, they exhibit varying levels of friction. Ball bearings typically have lower friction due to point contact between the balls and the raceways. Roller bearings, especially tapered roller bearings, distribute the load over a larger contact area, resulting in slightly higher friction compared to ball bearings. Track bearings, with their track interface, may have slightly higher friction compared to ball bearings or roller bearings due to the rolling elements’ contact with the track surface.
  • Installation and Maintenance: Track bearings, ball bearings, and roller bearings require proper installation and maintenance for optimal performance and longevity. However, track bearings may require additional attention during installation as they need to be properly aligned with the track or guide rail. Regular lubrication and periodic inspection are essential for all types of bearings to ensure smooth operation and prevent premature failure.

In summary, track bearings, ball bearings, and roller bearings have distinct designs and applications. Track bearings are specialized for guided motion along a track or rail, while ball bearings and roller bearings are more versatile and used in a wide range of rotational or linear motion applications. Each type of bearing has its advantages and considerations in terms of load handling, friction, efficiency, and installation requirements. Selecting the appropriate bearing type depends on the specific application requirements, load conditions, motion characteristics, and environmental factors.

China manufacturer PMI MSA30S Linear Guide Rail Heavy Duty Track Rollers Bearings and Carriage   deep groove ball bearingChina manufacturer PMI MSA30S Linear Guide Rail Heavy Duty Track Rollers Bearings and Carriage   deep groove ball bearing
editor by CX 2024-05-14

China high quality Printing Machine Bearings Natr25PP Natr Series 25*52*25mm Track Roller Bearings bearing driver kit

Product Description

 

Printing Machine Bearings NATR25PP NATR Series 25*52*25mm Track Roller Bearings

Description of Printing Machine Bearings NATR25PP NATR Series 25*52*25mm Track Roller Bearings

Series Description
NATR Yoke type track rollers with axial guidance by washers,gap seal,with inner ring
NATR…PP Yoke type track rollers with additional sealing rings
NATV Yoke type track rollers with axial guidance by washers,full complement,gap seal,with inner ring
NATV…PP Yoke type track rollers with additional sealing rings
NUTR Yoke type track rollers with axial guidance by the rolling element,full complement,gap seal,with inner ring
KR Stud type track rollers with axial guidance by rid and washer,gap seal
KR…PP Stud type track rollers with sealing rings
KRE Stud type track rollers with eccentric collar
KRE…PP Stud type track rollers with eccentric collar and sealing rings
KRV Stud type track rollers with axial guidance by rid and washer,full complement, gap seal
KRV…PP Stud type track rollers with sealing rings
KRVE Stud type track rollers with eccentric collar
KRVE…PP Stud type track rollers with eccentric collar and sealing rings
NUKR Stud type track rollers with axial guidance by the rolling element,full complement, gap seals
NUKRE Stud type track rollers with eccentric collar
CF Stud type track rollers with cage ,the same as KR series

Catalogue of Printing Machine Bearings NATR25PP NATR Series 25*52*25mm Track Roller Bearings

Outside 

Diameter

Bearing Designation and 

mass approx

Borndary Dimensions Basic Load Rating

Limiting 

Speed

Without 

seal

Mass Sealed Mass d D B C d1 Cr Cor As Yoke Type Track Rollers Grease
Dynamic Static Cw Cow
mm   g   g mm N rpm
16 NATR 5 14 NATR 5 PP 14 5 16 12 11 12 3050 3000 2050 2400 22000
NATV 5 15 NATV 5 PP 15 5 16 12 11 12 4500 6300 3680 4300 8500
19 NATR 6 20 NATR 6 PP 20 6 19 12 11 14 3600 3650 2450 2850 20000
NATV 6 21 NATV 6 PP 21 6 19 12 11 14 5700 8700 4600 6750 7000
24 NATR 8 41 NATR 8 PP 41 8 24 15 14 19 4500 5400 3900 4500 5000
NATV 8 42 NATV 8 PP 42 8 24 15 14 19 8600 12000 6700 9800 5500
30 NATR 10 64 NATR 10 PP 64 10 30 15 14 23 6100 7800 4500 6900 11000
NATV 10 65 NATV 10 PP 65 10 30 15 14 23 10900 17000 7600 11800 4500
32 NATR 12 71 NATR 12 PP 71 12 32 15 14 25 6600 9800 4660 7000 9000
NATV 12 72 NATV 12 PP 72 12 32 15 14 25 11800 19000 7800 13000 3900
35 NATR 15 103 NATR 15 PP 103 15 35 19 18 27 10500 17500 7800 11500 7000
NATV 15 105 NATV 15 PP 105 15 35 19 18 27 16000 32500 15710 20500 3400
40 NATR 17 144 NATR 17 PP 144 17 40 21 20 32 11800 19400 9500 13500 6000
NATV 17 152 NATV 17 PP 152 17 40 21 20 32 19600 37000 1200 23000 2900
47 NATR 20 246 NATR 20 PP 246 20 47 25 24 37 17500 29800 13500 22500 4900
NATV 20 254 NATV 20 PP 254 20 47 25 24 37 25800 57000 19000 39500 2600
52 NATR 25 275 NATR 25 PP 275 25 52 25 24 42 19500 36500 13400 23500 3600
NATV 25 285 NATV 25 PP 285 25 52 25 24 42 29000 69600 19800 40900 2100
62 NATR 30 470 NATR 30 PP 470 30 62 29 28 51 31000 57500 20900 35500 2600
NATV 30 481 NATV 30 PP 481 30 62 29 28 51 45500 104000 27800 60900 1700
72 NATR 35 635 NATR 35 PP 635 35 72 29 28 58 34500 67500 22500 41000 2000
NATV 35 647 NATV 35 PP 647 35 72 29 28 58 50800 109500 30900 70800 1400
80 NATR 40 805 NATR 40 PP 805 40 80 32 30 66 47000 91500 30900 56500 1700
NATV 40 890 NATV 40 PP 890 40 80 32 30 66 64000 139000 39800 87800 1300
85 NATR 45 910 NATR 45 PP 910 45 85 32 30 72 49100 98000 30600 56900 1500
90 NATR 50 960 NATR 50 PP 960 50 90 32 30 76 50500 10600 30600 57500 1300
NATV 50 990 NATV 50 PP 990 50 90 32 30 76 69500 187000 38700 90900 1000

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Single
Outer Dimension: Small and Medium-Sized (60-115mm)
Material: Bearing Steel
Spherical: Non-Aligning Bearings
Load Direction: Radial Bearing
Customization:
Available

|

Customized Request

track bearing

How does proper installation and alignment impact the performance and longevity of track bearings?

Proper installation and alignment play a critical role in the performance and longevity of track bearings. Correct installation ensures that the bearings are positioned and secured accurately, while proper alignment ensures that the load is distributed evenly and the bearings operate smoothly. Here’s an explanation of how proper installation and alignment impact the performance and longevity of track bearings:

Installation Impact:

  • Load Distribution: Proper installation ensures that the track bearings are aligned and positioned correctly, allowing for even load distribution. When bearings are installed incorrectly, the load may be unevenly distributed, leading to excessive wear on certain parts of the bearings and reduced overall performance.
  • Stability and Rigidity: Accurate installation provides stability and rigidity to the track bearings. Properly secured bearings minimize the risk of movement or vibration during operation, which can cause additional stress, premature wear, and potential damage to the bearings and surrounding components.
  • Reduction of Misalignment: Correct installation minimizes the chances of misalignment between the track bearings and the track or guide rails. Misalignment can lead to uneven loading, increased friction, and accelerated wear and tear on the bearings. Proper alignment reduces these issues, ensuring smooth and efficient operation.
  • Prevention of Contamination: During installation, it is important to take precautions to prevent contamination of the track bearings. Proper handling techniques, cleanliness, and the use of appropriate tools or protective measures help avoid introducing dirt, dust, or debris that can compromise the bearing’s performance and longevity.

Alignment Impact:

  • Reduced Friction and Wear: Proper alignment of track bearings helps minimize friction and wear. When bearings are misaligned, excessive forces and irregular motion can occur, leading to increased friction and accelerated wear. Proper alignment ensures that the bearings operate within their intended design parameters, reducing friction and promoting longevity.
  • Optimal Load Distribution: Correct alignment ensures that the load is distributed evenly across the track bearings. This prevents excessive stress on specific areas of the bearings, reducing the risk of premature failure and extending their service life. Optimal load distribution also contributes to smoother operation and improved overall performance.
  • Minimized Noise and Vibration: Proper alignment helps minimize noise and vibration during operation. Misaligned track bearings can result in irregular motion, leading to unwanted noise and vibration that can affect the performance, comfort, and efficiency of the machinery or equipment. Proper alignment promotes smoother and quieter operation.
  • Improved Efficiency: When track bearings are correctly aligned, the machinery or equipment experiences reduced resistance and improved efficiency. Misalignment can result in energy losses, increased power consumption, and decreased overall efficiency. Proper alignment ensures optimal power transfer and minimizes energy wastage.

It is important to follow the manufacturer’s guidelines and recommendations for the specific track bearings being installed. Proper installation techniques, including accurate positioning, secure fastening, and appropriate alignment, contribute to the optimal performance, reliability, and longevity of track bearings in various applications.

track bearing

How do track bearings enhance the overall efficiency and functionality of linear motion systems?

Track bearings play a crucial role in enhancing the overall efficiency and functionality of linear motion systems. They offer several benefits that contribute to improved performance, increased reliability, and enhanced functionality. Here’s a detailed explanation:

  • Reduced Friction: Track bearings are designed to minimize friction between moving components, allowing for smoother and more efficient linear motion. By reducing friction, they help to optimize the efficiency of the system, reducing energy consumption and minimizing wear on the components.
  • Precision and Stability: Track bearings provide precise guidance and stability to the linear motion system. They ensure accurate and repeatable motion along the intended path, allowing for precise positioning and control. This is particularly important in applications that require high accuracy, such as CNC machines, robotics, and automated assembly lines.
  • Load Distribution: Track bearings distribute the load evenly along their length, allowing for efficient load transfer and reducing the concentration of forces on specific components. This helps to prevent excessive wear, deformation, and premature failure of the system, improving overall reliability and longevity.
  • Handling Heavy Loads: Track bearings are specifically designed to handle heavy loads in linear motion systems. They offer high load capacities and robust construction, enabling them to support and move heavy objects with ease. This capability is essential in industries such as material handling, construction, and transportation.
  • Smooth and Quiet Operation: Track bearings are engineered to provide smooth and quiet operation, minimizing noise and vibrations in the linear motion system. This is especially important in applications where noise reduction and comfort are critical, such as in medical equipment, office automation, and consumer electronics.
  • Versatility and Adaptability: Track bearings come in various designs, sizes, and configurations to accommodate different linear motion system requirements. They can be easily integrated into existing systems or customized to fit specific applications. This versatility allows for greater flexibility and adaptability in designing and implementing linear motion solutions.
  • Maintenance and Serviceability: Track bearings are designed for ease of maintenance and serviceability. They often feature removable components, such as seals or shields, that allow for inspection, cleaning, and lubrication. This simplifies maintenance tasks and reduces downtime, contributing to improved overall system efficiency and uptime.

By incorporating track bearings into linear motion systems, industries can benefit from increased efficiency, improved performance, and enhanced functionality. Whether it’s achieving precise positioning, handling heavy loads, reducing friction, or ensuring smooth operation, track bearings play a vital role in optimizing the overall efficiency and functionality of linear motion systems.

track bearing

Can you explain the different types of track bearings used in industrial and mechanical systems?

Track bearings, also known as track rollers or track follower bearings, come in various types to suit different industrial and mechanical system requirements. Let’s explore the different types of track bearings commonly used in these applications:

  • Yoke Type Track Rollers: Yoke type track rollers are a popular type of track bearing characterized by their thick outer rings. They are designed to handle high radial loads and moderate axial loads. Yoke type track rollers feature an inner ring with a stud for mounting on a shaft or stud. They are widely used in applications such as conveyors, cam mechanisms, material handling systems, and agricultural machinery.
  • Stud Type Track Rollers: Stud type track rollers are similar to yoke type track rollers but lack an inner ring. Instead, they have a stud that serves as the mounting component. Stud type track rollers are suitable for applications with limited space or where the outer ring can be directly mounted onto a mating surface. They are commonly used in applications such as cam mechanisms, indexing equipment, and tensioning systems.
  • Cam Followers: Cam followers, also known as cam bearings or track followers, are track bearings designed specifically for cam-driven systems. They have a stud or shaft for mounting and a built-in roller or needle bearing. Cam followers follow the profile of a cam, converting the rotary motion of the cam into linear or oscillating motion. They are used in applications such as printing presses, packaging machinery, textile machinery, and automotive engines.
  • Guiding Track Rollers: Guiding track rollers are track bearings designed to provide precise and guided linear motion. They feature a thick outer ring with a track or guide surface. Guiding track rollers are commonly used in material handling systems, conveyor systems, and automated machinery to facilitate smooth and controlled movement along a track or guide rail.
  • V-Groove Track Rollers: V-groove track rollers have a specialized V-shaped groove on the outer ring. This groove allows the rollers to run on V-shaped tracks or rails, providing accurate alignment and guidance. V-groove track rollers are used in applications such as track systems, sliding gates, and linear motion guides.
  • Flanged Track Rollers: Flanged track rollers feature an additional flange on the outer ring. The flange helps in axial guidance and prevents the track roller from shifting or tilting under axial loads. Flanged track rollers are commonly used in applications such as cam mechanisms, linear motion systems, and conveyor systems.
  • Idler Track Rollers: Idler track rollers are non-powered track rollers used to support and guide conveyor belts, chains, or other moving components. They are typically used in material handling systems, conveyor systems, and packaging machinery.

These different types of track bearings offer versatility and flexibility in industrial and mechanical systems. Depending on the specific application requirements, engineers and designers can select the most suitable type of track bearing to ensure smooth motion, reliable operation, and efficient load support. The choice of track bearing type depends on factors such as load capacity, space constraints, track configuration, and environmental conditions.

China high quality Printing Machine Bearings Natr25PP Natr Series 25*52*25mm Track Roller Bearings   bearing driver kitChina high quality Printing Machine Bearings Natr25PP Natr Series 25*52*25mm Track Roller Bearings   bearing driver kit
editor by CX 2024-05-13

China Professional Hot Sales! Track Bearings Tapered Roller Bearing Hm136948/Hm136916xd OEM with High Quality bearing air

Product Description

Welcome to choose KORTON INDUSTRIAL LIMITED

Tapered Rolller Bearing Train bearing

NO 1. Our Advantages

1. Many years bearing products manufacturing and exporting experiences.
2. OEM order and non-standard bearing order can be accepted.
3. Many sizes of bearing are available. Large quantity bearing can be provided.
4. To respect customers, you can choose the loading port.
5. A certain number of free sample can be provide to support our customer’s after-sale services and warranty.
 
NO 2. Description Of Inch Tapered Roller Bearing
1. Inch Taper roller bearing mainly bear radial primarily diameter, the axial load. Bearing capacity depends on the Angle of the outer ring raceway, the greater the Angle, the greater the carrying capacity.
2. Inch Taper roller bearing type belongs to the separation bearing, , according to the bearing the number of columns of the scroll body can be divided into single row, double row and 4 row circular cone roller bearings.
3. Single row inch taper roller bearing clearance to users in the installation adjustment; Double row and four row circular cone roller bearings clearance has according to user requirements for a given when the products leave the factory, not the user.
4.Tapered roller bearing are widely used in car: front-wheel, rear wheel, transmission, differential pinion shaft. Machine tool spindles, construction machinery, largescale agricultural machinery, railway vehicles, gear reduction, the rolling mill roll neck and deceleration devices
5. Equipment, instrument, building machinery, rolling stock agricultural machinery and various specialized machineries.
 
NO 3. OEM All Brand Bearing
1. deep groove ball bearing 6000,6200,6300,6400,61800,61900,Z,RS,ZZ,2RS
2. spherical roller bearing 22200,22300,23000,24000,23100,24100,CA,CC,E,W33
3. cylindrical roller bearing N,NU,NJ,NN,NUP,E,ECP,ECM,ECJ
4. taper roller bearing 35710,30300,32200,32300,31300,32000
5. Aligning ball bearing 1200,1300,2200,2300,
6. needle roller bearing NA,NAV,NK,NKI,RNA,NK,RNAV,ZKLF,ZKLN,ZARF,ZARN
7. thrust ball bearing 51100,51200,51300,51400,E,M
8. angular contact ball bearing7000,7100,7200,7300,AC,BECBM,C 
9. spherical plain bearing GE,GEG,GEEW,U,UC,UG,GX,GAC,SA,SABP
10.Wheel hub bearing /ceramic bearing/plastic bearing/lazy susan bearing
 
NO 4. Tapered Roller Bearing Specification

Seals Types OPEN
Vibration Level Z1V1,Z2V2,Z3V3
Clearance C2,C0,C3,C4,C5
Tolerance Codes ABEC-1,ABEC-3,ABEC-5
Materral GCr15-China/AISI52100-USA/Din100Cr6-Germany
MOQ 1Set at least
Delivery Time 15-45 days after contract
Payment Terms TT/PAPAL/WESTERN UNION
Package Tube package+outer carton+pallets;Single box+outer carton+pallets;
Tube pavkge+middle box+outer carton+pallets;According to your requirement

NO 5. Tapered Roller Bearing Models

Why Choose Us
 
-We are an industrial and trading company.We have our own brand: SFNB .If you interested in our product,I can take you to visit our factory.
-Our factory have advanced testing equipment,before the every product leave the factory,we will be testing.We can send samples to you,you can test the quality,and if you accept the sample quality,we can promise: the follow-up orders’ quality will be the same as samples.
-About ordinary standard type of bearing ,We have rich inventory,not have MOQ,if your need a product is Non-standard size,need customize,we will according the product size to determine the MOQ.
-Our company can accept OEM,you can send sample to me,we can manufacturing products the same as sample.Meanwhile,we also can accept some well-known brands of OEM,
-If the amount of money is less,you can pay it by Paypal or Alipay.Of course you can payment by TT or Western Union etc.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Single
Outer Dimension: Medium and Large(120-190mm)
Material: Bearing Steel
Spherical: Non-Aligning Bearings
Load Direction: Radial Bearing
Customization:
Available

|

Customized Request

track bearing

Can you provide examples of industries and applications where track bearings are frequently used?

Track bearings find extensive use in various industries and applications where smooth and controlled motion along tracks or guide rails is required. Let’s explore some examples of industries and applications where track bearings are frequently used:

  • Material Handling and Conveying: Track bearings are widely employed in material handling and conveying systems, such as conveyor belts, roller conveyors, and overhead cranes. They facilitate the smooth movement of goods, packages, and components along the tracks, ensuring efficient and reliable transportation within warehouses, distribution centers, manufacturing facilities, and airports.
  • Automotive and Transportation: Track bearings are utilized in various automotive applications, including suspension systems, steering systems, and sliding doors. They enable smooth and precise movement of components, contributing to vehicle performance, comfort, and safety. Additionally, track bearings are used in railway applications, such as railcar doors, sliding mechanisms, and track guidance systems.
  • Aerospace and Defense: Track bearings play a crucial role in aerospace and defense applications, including aircraft landing gears, flap systems, and missile launchers. They provide the necessary support, guidance, and load-carrying capacity for critical components, ensuring smooth and controlled motion in demanding operating conditions.
  • Industrial Machinery: Track bearings are commonly found in various industrial machinery and equipment. They are used in machine tools, robotics, printing presses, industrial ovens, and packaging machines, among others. In these applications, track bearings contribute to precise motion control, accurate positioning, and reliable performance of moving components.
  • Construction and Mining: Track bearings are extensively employed in construction and mining equipment, such as excavators, bulldozers, cranes, and drilling machines. They provide support and guidance for the movable parts, allowing efficient and controlled movement in rugged and demanding environments.
  • Medical and Healthcare: Track bearings are utilized in various medical and healthcare applications. They are used in hospital beds, medical imaging equipment, laboratory automation systems, and patient handling devices. Track bearings enable smooth and quiet operation, precise positioning, and patient comfort in these critical healthcare settings.
  • Renewable Energy: Track bearings are employed in renewable energy systems, including solar tracking systems and wind turbine pitch and yaw mechanisms. They enable the precise tracking of solar panels and the controlled adjustment of wind turbine blades, maximizing energy capture and optimizing system performance.

These examples represent just a fraction of the many industries and applications where track bearings are frequently used. The versatility, reliability, and precise motion control provided by track bearings make them a fundamental component in numerous mechanical systems across various sectors.

track bearing

Can track bearings withstand harsh environments or exposure to contaminants?

Track bearings are designed to operate in a wide range of environments, including harsh conditions and exposure to contaminants. However, the ability of track bearings to withstand such environments depends on their specific design, materials, and protective measures. Here’s a detailed explanation:

Many track bearings are engineered with features that enhance their resistance to harsh environments and contaminants. These features may include:

  • Sealing and Shielding: Some track bearings are equipped with seals or shields that provide a physical barrier against contaminants such as dirt, dust, water, and debris. These seals or shields help prevent the entry of contaminants into the bearing’s internal components, reducing the risk of damage and premature wear.
  • Corrosion Resistance: Track bearings intended for use in corrosive environments are often constructed from materials that offer high corrosion resistance. Stainless steel, for example, is commonly used due to its ability to withstand exposure to moisture, chemicals, and other corrosive substances.
  • Specialized Coatings: Some track bearings may feature specialized coatings or surface treatments that provide additional protection against contaminants and harsh conditions. These coatings can enhance the bearing’s resistance to corrosion, abrasion, and chemical exposure.
  • High-Temperature Capability: Certain track bearings are designed to withstand high-temperature environments. They are typically constructed using heat-resistant materials and lubricants that can maintain their structural integrity and performance even under extreme heat.
  • Environmental Sealing: In applications where track bearings are exposed to extreme conditions, such as underwater or in highly dusty environments, special environmental sealing measures may be employed. These measures can include the use of advanced sealing technologies or the encapsulation of the bearings within protective housings.

While track bearings are designed to withstand harsh environments and exposure to contaminants, it is important to note that their performance and longevity can still be affected over time. Regular maintenance, including cleaning, inspection, and lubrication, is crucial to ensure proper functioning and to mitigate the impact of contaminants on the bearings.

It is recommended to consult the manufacturer’s specifications and guidelines for the track bearings being used in a specific application. Manufacturers often provide information on the environmental ratings and limits of their bearings, helping users determine the suitability of the bearings for particular harsh environments or exposure to contaminants.

By selecting track bearings with appropriate features, materials, and protection, and by implementing proper maintenance practices, it is possible to enhance the bearings’ ability to withstand harsh environments and exposure to contaminants, thereby maximizing their performance and longevity.

track bearing

How do track bearings compare to other types of bearings like ball bearings or roller bearings?

Track bearings, ball bearings, and roller bearings are all types of rolling bearings used in various applications. Let’s compare track bearings to ball bearings and roller bearings to understand their similarities and differences:

  • Design and Construction: Track bearings, ball bearings, and roller bearings have different designs and constructions. Track bearings, also known as track rollers or track follower bearings, are designed specifically for guided linear or rotational motion along a track or guide rail. They feature an outer ring with a track surface, an inner ring, rolling elements (such as rollers or needles), and a cage. Ball bearings, on the other hand, have spherical rolling elements (balls) sandwiched between inner and outer rings. Roller bearings, as the name suggests, have cylindrical or tapered rolling elements (rollers) between inner and outer rings.
  • Motion and Load Handling: Track bearings are primarily used for guided motion in track-based systems, while ball bearings and roller bearings are used for general rotational or linear motion. Track bearings are designed to support both radial and axial loads and provide smooth and controlled motion along the track. Ball bearings and roller bearings are also capable of supporting radial and axial loads but are typically used in applications where the motion is not constrained to a specific track or guide rail. Roller bearings, with their larger contact area and higher load-carrying capacity, are often preferred for applications with higher loads.
  • Applications: Track bearings are commonly used in applications such as material handling systems, conveyors, cam mechanisms, automated machinery, construction equipment, and agricultural machinery, where guided motion along a track or rail is required. Ball bearings and roller bearings find applications in a wide range of industries and systems, including electric motors, pumps, automotive applications, industrial machinery, and appliances.
  • Friction and Efficiency: Track bearings, ball bearings, and roller bearings all aim to minimize friction and ensure efficient operation. However, due to their different designs and contact surfaces, they exhibit varying levels of friction. Ball bearings typically have lower friction due to point contact between the balls and the raceways. Roller bearings, especially tapered roller bearings, distribute the load over a larger contact area, resulting in slightly higher friction compared to ball bearings. Track bearings, with their track interface, may have slightly higher friction compared to ball bearings or roller bearings due to the rolling elements’ contact with the track surface.
  • Installation and Maintenance: Track bearings, ball bearings, and roller bearings require proper installation and maintenance for optimal performance and longevity. However, track bearings may require additional attention during installation as they need to be properly aligned with the track or guide rail. Regular lubrication and periodic inspection are essential for all types of bearings to ensure smooth operation and prevent premature failure.

In summary, track bearings, ball bearings, and roller bearings have distinct designs and applications. Track bearings are specialized for guided motion along a track or rail, while ball bearings and roller bearings are more versatile and used in a wide range of rotational or linear motion applications. Each type of bearing has its advantages and considerations in terms of load handling, friction, efficiency, and installation requirements. Selecting the appropriate bearing type depends on the specific application requirements, load conditions, motion characteristics, and environmental factors.

China Professional Hot Sales! Track Bearings Tapered Roller Bearing Hm136948/Hm136916xd OEM with High Quality   bearing airChina Professional Hot Sales! Track Bearings Tapered Roller Bearing Hm136948/Hm136916xd OEM with High Quality   bearing air
editor by CX 2024-05-09

China best CZPT CZPT Quality Stud Track Cam Followers Needle Roller Bearings CF24-1b, Kr72, CF24-1buu, Kr72PP, Mcfr72sbx connecting rod bearing

Product Description

 

Product Description

Product Name Tracker roller bearing, Cam follower bearing
Precision Rating P6, P0, P5, P4, P2
Material Bearing Steel (GCr15)
Clearance  C1 C2 C3 
Vibration & Noisy Z1, Z2, Z3 V1, V2, V3
Features Inch Size, with Eccentric Collar, with Hexagon Hole
Application Machine Tools, Auto Parts, Power Generators,and other Industrial Applications
Certification ISO 9001: 2008
Packing 1. Neutral Packing Bearing 2. Industrial Packing 3. Commercial Packing Bearing 4. Customize

 

Product Parameters

 

IKO   IKO   Mcgill D d C B1 B2   G G1          
CF04B KR12 CF4BUU KR12PP MCFR12SBX 12 4 8 20 11 M4X0.7 6 0.08 210 220
CF05B KR13 CF5BUU KR13PP MCFR13SBX 13 5 9 23 13 M5X0.8 7.5 0.23 260 280
CF06B KR16 CF6BUU KR16PP MCFR16SBX 16 6 11 28 16 M6X1 8 0.3 370 400
CF08B KR19 CF8BUU KR19PP MCFR19SBX 19 8 11 32 20 M8X1.25 10 0.8 430 630
CF10B KR22 CF10BUU KR22PP MCFR22SBX 22 10 12 36 23 M10X1.25 12 1.2 550 670
CF10-1B KR26 CF10-1BUU KR26PP MCFR26SBX 26 10 12 36 23 M10X1.25 12 1.2 550 670
CF12B KR30 CF12BUU KR30PP MCFR30SBX 30 12 14 40 25 6 M12X1.5 13 6 3 2.2 810 900
CF12-1B KR32 CF12-1BUU KR32PP MCFR32SBX 32 12 14 40 25 6 M12X1.5 13 6 3 2.2 810 900
CF16B KR35 CF16BUU KR35PP MCFR35SBX 35 16 18 52 32.5 8 M16X1.5 17 6 3 5.8 1230 1560
CF18B KR40 CF18BUU KR40PP MCFR40SBX 40 18 20 58 36.5 8 M18X1.5 19 6 3 8.5 1500 2500
CF20-1B KR47 CF20-1BUU KR47PP MCFR47SBX 47 20 24 66 40.5 9 M20X1.5 21 8 4 12 2110 3140
CF20B KR52 CF20BUU KR52PP MCFR52SBX 52 20 29 66 40.5 9 M20X1.5 21 8 4 12 2110 3140
CF24B KR62 CF24BUU KR62PP MCFR62SBX 62 24 29 80 49.5 11 M24X1.5 25 8 4 22 3110 3840
CF24-1B KR72 CF24-1BUU KR72PP MCFR72SBX 72 24 29 80 49.5 11 M24X1.5 25 8 4 22 3110 3840
CF30B KR80 CF30BUU KR80PP MCFR80SBX 80 30 35 100 63 15 M30X1.5 32 8 4 46 4630 6300
CF30-1B KR85 CF30-1BUU KR85PP MCFR85SBX 85 30 35 100 63 15 M30X1.5 32 8 4 46 4630 6300
CF30-2B KR90 CF30-2BUU KR90PP MCFR90SBX 90 30 35 100 63 15 M30X1.5 32 8 4 46 4630 6300

 

 

 

Workshop

 

Packaging & Shipping

Bearings Package:

    1):Inner Plastic Bag+ Paper Box + Carton(+Pallet)

    2):Small sizes:Plastic Tube + Carton

    3):Big sizes:Wooden Case

 

Bearings Lead time:

   We will prepare your order as soon as possible

    1)2-3 days for ex-stock

    2)7-20 days for others

 

 Shipping & Delivery time:

   1) Less than 45 Kg:DHL TNT Fedex UPS express will be better,( 4-7 days delivered to your address)

   2) Between 45 to 200 Kg:Air transiportation will be better,( 5-14 days delivered to your airport)

   3) Over 200 Kg:Sea transportation will be better.( Cheapest,18-45 days to your port ).

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

track bearing

Can track bearings be customized or modified for specific track or linear motion applications?

Yes, track bearings can be customized or modified to meet specific requirements of track or linear motion applications. Manufacturers often offer a range of options and capabilities to tailor track bearings to the unique needs of different industries and applications. Here are some ways in which track bearings can be customized or modified:

  • Size and Dimensional Variations: Track bearings can be customized in terms of size, diameter, width, and overall dimensions to fit specific track or linear motion systems. Manufacturers can provide bearings with varying sizes and load capacities to accommodate different application requirements.
  • Material Selection: Track bearings can be manufactured from various materials depending on the specific application’s demands. Common materials include steel, stainless steel, ceramic, and polymer composites. Material selection can be customized to achieve desired properties such as corrosion resistance, high temperature tolerance, or low friction.
  • Sealing and Protection: In applications where track bearings are exposed to contaminants, moisture, or harsh environments, customized sealing and protection features can be added. These may include additional seals, shields, or coatings to enhance the bearing’s resistance to dust, water, chemicals, or extreme temperatures.
  • Lubrication Options: While self-lubricating or maintenance-free track bearings offer convenience, applications with specific lubrication requirements may benefit from customized lubrication options. Manufacturers can modify the bearing design to accommodate external lubrication systems or provide alternative lubrication methods to meet the unique demands of the application.
  • Specialized Load and Speed Ratings: In certain applications, track bearings may need to handle exceptionally high loads or operate at high speeds. Manufacturers can customize the bearing design to offer specialized load and speed ratings to ensure optimal performance and reliability in such demanding conditions.
  • Mounting and Attachment Options: Track bearings can be customized with different mounting and attachment options to facilitate easy installation and integration into specific track or linear motion systems. This may include variations in bolt hole patterns, flange designs, or specialized mounting arrangements.
  • Track Geometry Compatibility: Track bearings can be designed or modified to match specific track or guide rail geometries. This ensures proper fit, alignment, and smooth operation along the designated track, minimizing the risk of misalignment or issues related to track compatibility.

It is important to work closely with bearing manufacturers or suppliers to discuss the specific requirements of the track or linear motion application. By collaborating with experts, it is possible to customize or modify track bearings to optimize performance, reliability, and longevity in a wide range of applications.

track bearing

What innovations or advancements have been made in track bearing technology?

Track bearing technology has seen several innovations and advancements over the years, driven by the need for improved performance, increased reliability, and enhanced functionality. Here are some notable innovations in track bearing technology:

  • Advanced Materials: The development of new materials has significantly improved the performance and longevity of track bearings. Materials such as ceramic, hybrid ceramics, and high-performance steels offer enhanced strength, corrosion resistance, and temperature stability, making them suitable for demanding applications.
  • Improved Sealing Solutions: Sealing technology has advanced to provide better protection against contaminants, moisture, and other environmental factors. Innovative seal designs and materials, including labyrinth seals, triple lip seals, and specialized coatings, help keep track bearings clean and extend their service life.
  • Enhanced Lubrication: Lubrication plays a crucial role in the performance and lifespan of track bearings. Advancements in lubrication technology, such as the development of high-performance greases and solid lubricants, have improved the efficiency, reliability, and maintenance requirements of track bearings.
  • Integrated Sensor Systems: Track bearings can now incorporate integrated sensor systems to monitor various parameters such as temperature, vibration, and load. These sensors provide real-time data on bearing health and performance, enabling predictive maintenance strategies and early detection of potential issues.
  • Smart Bearing Technology: Smart bearing technology combines sensor systems with advanced data analytics and connectivity capabilities. These bearings can communicate wirelessly with monitoring systems, enabling remote monitoring, condition-based maintenance, and optimization of operational parameters for improved performance and efficiency.
  • Design Optimization: Computer-aided design (CAD) and finite element analysis (FEA) tools have revolutionized the design process for track bearings. These tools allow for precise modeling, simulation, and optimization of bearing geometries, materials, and load capacities, resulting in improved performance, reduced weight, and enhanced reliability.
  • Application-Specific Customization: With advancements in manufacturing processes, track bearings can now be customized to meet the specific requirements of different applications. Manufacturers can tailor bearing designs, materials, and coatings to optimize performance, reliability, and compatibility with unique operating conditions.

These innovations and advancements in track bearing technology have collectively contributed to improved performance, extended service life, and enhanced functionality in a wide range of industries and applications. They continue to drive progress in the field, enabling track bearings to meet the evolving demands of modern industrial systems.

track bearing

Are there specific materials commonly used in the construction of track bearings?

Yes, specific materials are commonly used in the construction of track bearings to ensure their durability, load-carrying capacity, and resistance to various operating conditions. Let’s discuss the materials commonly used for different components of track bearings:

  • Outer and Inner Rings: The outer and inner rings of track bearings are typically made from high-quality bearing steels such as chrome steel (e.g., AISI 52100) or stainless steel. These materials offer excellent strength, hardness, and wear resistance. Chrome steel is the most commonly used material due to its favorable combination of mechanical properties and cost-effectiveness. In some cases, specialized alloys or heat-treated steels may be used to enhance specific properties like corrosion resistance or high-temperature performance.
  • Rolling Elements: The rolling elements in track bearings are commonly made from bearing-grade steel or ceramic materials. Bearing-grade steel, similar to the materials used for the outer and inner rings, offers high strength and wear resistance. Ceramic materials, such as silicon nitride (Si3N4) or zirconia (ZrO2), are also used in certain applications where their advantages, such as high hardness, low density, and resistance to corrosion and high temperatures, are desired.
  • Cage: The cage in track bearings is typically made from materials such as steel, brass, or engineered polymers. Steel cages are commonly used due to their strength and durability. Brass cages offer good corrosion resistance and are suitable for certain operating environments. Engineered polymers, such as polyamide (nylon), are used in applications where low friction, noise reduction, or lightweight design is desired.
  • Seals or Shields: The seals or shields used in track bearings are made from various materials depending on the specific requirements. Common materials include rubber or synthetic elastomers for seals, and steel or stainless steel for shields. These materials provide effective protection against contaminants while maintaining proper lubrication within the bearing assembly.
  • Lubrication: Lubricants used in track bearings can vary depending on the application and operating conditions. Common lubrication options include mineral oils, synthetic oils, and greases. The lubricant’s formulation is carefully chosen to provide adequate lubrication, reduce friction and wear, and protect against corrosion and contamination.

Overall, the choice of materials for track bearings is influenced by factors such as load requirements, operating conditions (including temperature and moisture levels), desired lifespan, and cost considerations. By selecting appropriate materials for each component, track bearings can deliver reliable performance and extended service life in a wide range of industrial and mechanical applications.

China best CZPT CZPT Quality Stud Track Cam Followers Needle Roller Bearings CF24-1b, Kr72, CF24-1buu, Kr72PP, Mcfr72sbx   connecting rod bearingChina best CZPT CZPT Quality Stud Track Cam Followers Needle Roller Bearings CF24-1b, Kr72, CF24-1buu, Kr72PP, Mcfr72sbx   connecting rod bearing
editor by CX 2024-05-08

China Professional Double Row Track Roller Bearings Lr5203 (LR5000/LR5001/LR5002/LR5003/LR5004/LR5005/LR5006) deep groove ball bearing

Product Description

LR50/5  LR50/8-2RS   LR50/6  LR50/6-2RS   LR50/7-2RS  LR50/7  LR50/8  LR50/8-2RS   LR5 (LR5R 361202R 361203R 361204R 361205R 361206R 3067C-2Z 306702C-2Z 306703C2Z 306704C-2Z 306705C-2Z 306706C-2Z 306707C-2Z 306708C-2Z 3068C-2Z 306802C-2Z 306803C-2Z 306804C-2Z 306805C-2Z 306806C-2Z 306807C-2Z 306838C-2Z LR200-2RS LR202-2RS LR202-2RS LR203-2RS LR204-2RS
LR205-2RS LR206-2RS LR207-2RS LR606NPPU LR607NPPU LR608NPPU LR6000NPPU LR6001NPPU LR6002NPPU LR6003NPPU LR6004NPPU LR50/5NPPU LR50/6NPPU LR50/7NPPU LR50/8NPPU LR5000NPPU LR5001NPPU LR5002NPPU LR5003NPPU LR5004NPPU LR5005NPPU LR5006NPPU LR5008NPPU
LR5200NPPU LR5201NPPU LR5202NPPU LR5203NPPU LR5204NPPU LR5205NPPU LR5206NPPU LR5207NPPU LR5200KDDU LR5201KDDU LR5202KDDU LR5203KDDU LR5204KDDU LR5205KDDU LR5206KDDU LR5207KDDU LR5300-2RS,LR5301-2RS,LR5302-2RS,LR5303-2RS LR5304-2RS, LR5305-2RS,LR5306-2RS,LR5307-2RS,LR5308-2RS (2RS,2Z,KDD,NPP)
ZKLN0619-2 ZKLN1034-2 ZKLN0624-2 ZKLN1034-2 ZKLN1545-2 ZKLN1545-2 ZKLN 0571 -2 ZKLN1242-2 ZKLN2557-2 ZKLN1545-2 ZKLN3572-2 ZKLN1747-2 ZKLN3062-2 ZKLN4075-2 ZKLN5090-2 ZKLN60110-2 ZKLN3072-2 ZKLN80130-2 ZKLN50110-2 ZKLN0624-2Z ZKLN5090-2 ZKLN70120-2 ZKLN90150-2 ZKLN100160-2

OUR PROMISES
   Product quality standards are guaranteed. Our products have got ISO 9001 & CE international quality management system. They all produced with best advanced technology.We are proactive and we offer only products complying with top standards of quality and warranty. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Cage: With Cage
Rows Number: Double
Load Direction: Thrust Bearing
Style: Without Outer Ring, With Outer Ring, Without Inner Ring
Material: Bearing Steel
Type: Open
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

track bearing

Can you provide examples of industries and applications where track bearings are frequently used?

Track bearings find extensive use in various industries and applications where smooth and controlled motion along tracks or guide rails is required. Let’s explore some examples of industries and applications where track bearings are frequently used:

  • Material Handling and Conveying: Track bearings are widely employed in material handling and conveying systems, such as conveyor belts, roller conveyors, and overhead cranes. They facilitate the smooth movement of goods, packages, and components along the tracks, ensuring efficient and reliable transportation within warehouses, distribution centers, manufacturing facilities, and airports.
  • Automotive and Transportation: Track bearings are utilized in various automotive applications, including suspension systems, steering systems, and sliding doors. They enable smooth and precise movement of components, contributing to vehicle performance, comfort, and safety. Additionally, track bearings are used in railway applications, such as railcar doors, sliding mechanisms, and track guidance systems.
  • Aerospace and Defense: Track bearings play a crucial role in aerospace and defense applications, including aircraft landing gears, flap systems, and missile launchers. They provide the necessary support, guidance, and load-carrying capacity for critical components, ensuring smooth and controlled motion in demanding operating conditions.
  • Industrial Machinery: Track bearings are commonly found in various industrial machinery and equipment. They are used in machine tools, robotics, printing presses, industrial ovens, and packaging machines, among others. In these applications, track bearings contribute to precise motion control, accurate positioning, and reliable performance of moving components.
  • Construction and Mining: Track bearings are extensively employed in construction and mining equipment, such as excavators, bulldozers, cranes, and drilling machines. They provide support and guidance for the movable parts, allowing efficient and controlled movement in rugged and demanding environments.
  • Medical and Healthcare: Track bearings are utilized in various medical and healthcare applications. They are used in hospital beds, medical imaging equipment, laboratory automation systems, and patient handling devices. Track bearings enable smooth and quiet operation, precise positioning, and patient comfort in these critical healthcare settings.
  • Renewable Energy: Track bearings are employed in renewable energy systems, including solar tracking systems and wind turbine pitch and yaw mechanisms. They enable the precise tracking of solar panels and the controlled adjustment of wind turbine blades, maximizing energy capture and optimizing system performance.

These examples represent just a fraction of the many industries and applications where track bearings are frequently used. The versatility, reliability, and precise motion control provided by track bearings make them a fundamental component in numerous mechanical systems across various sectors.

track bearing

Can track bearings be used in both light-duty and heavy-duty machinery applications?

Yes, track bearings can be used in both light-duty and heavy-duty machinery applications. They are versatile components that offer reliable support for linear motion in a wide range of industrial settings. Here’s a detailed explanation:

1. Light-Duty Machinery Applications:

In light-duty machinery applications, track bearings provide cost-effective and efficient solutions for various tasks. Light-duty track bearings are designed to handle lower loads and are commonly used in applications such as:

  • Office automation equipment
  • Consumer electronics
  • Printing machinery
  • Small conveyors and material handling systems
  • Automated vending machines
  • Textile machinery

These applications typically involve lighter loads and lower operating speeds, making light-duty track bearings suitable for providing smooth and reliable linear motion.

2. Heavy-Duty Machinery Applications:

Track bearings are also widely used in heavy-duty machinery applications that require robust components capable of handling substantial loads and challenging operating conditions. Heavy-duty track bearings are designed to withstand higher loads and offer increased durability. They are commonly employed in applications such as:

  • Material handling equipment
  • Construction machinery
  • Mining equipment
  • Transportation systems
  • Industrial automation
  • Large-scale conveyors
  • Steel mills

These applications often involve heavy loads, high operating speeds, and demanding environments. Track bearings in heavy-duty machinery applications are engineered to provide reliable performance, extended service life, and resistance to factors such as contamination, shock, and vibration.

Track bearings are available in various sizes, designs, and load capacities, allowing them to be tailored to the specific requirements of both light-duty and heavy-duty machinery applications. Manufacturers offer a range of options to accommodate different load capacities, operating conditions, and performance specifications.

It is important to consider the specific requirements and operating conditions of the machinery application when selecting track bearings. Consulting with bearing manufacturers or industry experts can help ensure the appropriate track bearings are chosen for optimal performance and reliability in both light-duty and heavy-duty machinery applications.

track bearing

How do track bearings contribute to smooth and precise motion in machinery and equipment?

Track bearings play a crucial role in enabling smooth and precise motion in machinery and equipment. They provide support and guidance for moving components, allowing them to move along tracks or guide rails with minimal friction and accurate positioning. Let’s explore how track bearings contribute to smooth and precise motion:

  • Reduced Friction: Track bearings are designed to minimize friction between the rolling elements (such as balls or rollers) and the raceways (inner and outer rings). By reducing friction, track bearings help to minimize energy losses, prevent excessive heat generation, and extend the lifespan of the bearing and other components in the system. Low friction enables smoother and more efficient motion, resulting in improved overall performance.
  • Accuracy and Precision: Track bearings are manufactured to precise tolerances, ensuring consistent dimensions and smooth surfaces. This precision contributes to accurate and repeatable positioning of the moving components along the track or guide rail. It allows machinery and equipment to achieve the desired motion with minimal deviation or backlash, enabling precise control and operation.
  • Load Distribution: Track bearings are designed to distribute loads evenly across the rolling elements and raceways. This load distribution helps prevent localized stress concentrations and ensures that the applied loads are shared by multiple contact points. By distributing the loads effectively, track bearings enhance the stability and integrity of the moving components, reducing the risk of premature wear or failure.
  • Guidance and Alignment: Track bearings provide guidance and alignment for the moving components. They help maintain the desired orientation and position of the components along the track or guide rail, preventing misalignment and unwanted movements. This guidance ensures smooth and precise motion, minimizing vibrations, noise, and the risk of component damage or malfunction.
  • Shock and Impact Absorption: Track bearings are designed to absorb shocks and impacts that may occur during operation. They help cushion the effects of sudden loads or vibrations, protecting the moving components and reducing the transmission of these forces to the rest of the machinery or equipment. This shock absorption capability contributes to smoother and more stable motion, enhancing overall performance and reliability.

By incorporating high-quality track bearings into machinery and equipment, engineers can achieve smooth and precise motion, improving the efficiency, accuracy, and longevity of the system. Proper selection, installation, and maintenance of track bearings are essential to ensure optimal performance and to minimize the risk of issues such as excessive wear, misalignment, or loss of motion control.

China Professional Double Row Track Roller Bearings Lr5203 (LR5000/LR5001/LR5002/LR5003/LR5004/LR5005/LR5006)   deep groove ball bearingChina Professional Double Row Track Roller Bearings Lr5203 (LR5000/LR5001/LR5002/LR5003/LR5004/LR5005/LR5006)   deep groove ball bearing
editor by CX 2024-05-03

China best Inch Size Track Rollers, Stud Type Cam Follower Bearings (CF-1/2-N-SB, CF-1/2-SB, CF-9/16-SB, CF-5/8-N-SB, CF-5/8-SB) bearing driver

Product Description

 

Product Description

Product Name Tracker roller bearing, Cam follower bearing
Precision Rating P6, P0, P5, P4, P2
Material Bearing Steel (GCr15)
Clearance  C1 C2 C3 
Vibration & Noisy Z1, Z2, Z3 V1, V2, V3
Features Inch Size, with Eccentric Collar, with Hexagon Hole
Application Machine Tools, Auto Parts, Power Generators,and other Industrial Applications
Certification ISO 9001: 2008
Packing 1. Neutral Packing Bearing 2. Industrial Packing 3. Commercial Packing Bearing 4. Customize

 

Product Parameters

 

Bearing No. Dimensions (mm) Basic Load Rating(KN) Limited Mass
Speed
Without seals Sealed Type D d C B B1 B2 G1 C Co rpm kg
CF-1/2-N-B CF-1/2-N-SB 12.7 4.83 8.73 22.23 12.7 6.35 3.44 3.84 12000 0.009
CF-1/2-B CF-1/2-SB 12.7 4.83 9.53 26.19 15.88 6.35 3.84 4.4 12000 0.01
CF-9/16-B CF-9/16-SB 14.29 4.83 9.53 26.19 15.88 6.35 4.3 5.3 10000 0.015
CF-5/8-N-B CF-5/8-N-SB 15.88 6.35 10.32 26.99 15.88 7.94 4.72 6.24 8800 0.019
CF-5/8-B CF-5/8-SB 15.88 6.35 11.11 30.96 19.05 7.94 5.2 7 8800 0.571
CF-11/16-B CF-11/16-SB 17.46 6.35 11.11 30.96 19.05 7.94 6.5 8.5 8000 0.03
CF-3/4-B CF-3/4-SB 19.05 9.53 12.7 35.72 22.23 6.35 9.53 7.12 10 6400 0.037
CF-7/8-B CF-7/8-SB 22.23 9.53 12.7 35.72 22.23 6.35 9.53 7.12 10 6400 0.048
CF-1-B CF-1-SB 25.4 11.11 15.88 42.07 25.4 6.35 12.7 10.64 18.5 5200 0.076
CF-1 1/8-B CF-1 1/8-SB 28.58 11.11 15.88 42.07 25.4 6.35 12.7 10.64 18.5 5200 0.087
CF-1 1/4-B CF-1 1/4-SB 31.75 12.7 19.05 51.59 31.75 7.94 15.88 19.2 25.9 4400 0.14
CF-1 3/8-B CF-1 3/8-SB 34.93 12.7 19.05 51.59 31.75 7.94 15.88 19.2 25.9 4400 0.163
CF-1 1/2-B CF-1 1/2-SB 38.1 15.88 22.23 61.12 38.1 9.53 19.05 23 32.7 3600 0.235
CF-1 5/8-B CF-1 5/8-SB 41.28 15.88 22.23 61.12 38.1 9.53 19.05 23 32.7 3600 0.27
CF-1 3/4-B CF-1 3/4-SB 44.45 19.05 25.4 70.64 44.45 11.11 22.23 28.7 45.4 3200 0.379
CF-1 7/8-B CF-1 7/8-SB 47.63 19.05 25.4 70.64 44.45 11.11 22.23 28.7 45.4 3200 0.426
CF-2-B CF-2-SB 50.8 22.23 31.75 83.34 50.8 12.7 25.4 37.3 65.8 2800 0.64
CF-2 1/4-B CF-2 1/4-SB 57.15 22.23 31.75 83.34 50.8 12.7 25.4 37.3 65.8 2800 0.774
CF-2 1/2-B CF-2 1/2-SB 63.5 25.4 38.1 96.04 57.15 14.29 28.58 54 102.3   1.126
CF-2 3/4-B CF-2 3/4-SB 69.85 25.4 38.1 96.04 57.15 14.29 28.58 54 102.3   1.316
CF-3-B CF-3-SB 76.2 31.75 44.45 108.7 63.5 15.88 31.75 72.3 155   1.905
CF-3 1/4-B CF-3 1/4-SB 82.55 31.75 44.45 108.7 63.5 15.88 31.75 72.3 155   2.17
CF-3 1/2-B CF-3 1/2-SB 88.9 34.93 50.8 121.4 69.85 17.46 34.93 104.8 196.7   2.878
CF-4-B CF-4-SB 101.6 38.1 57.15 146.8 88.9 19.05 38.1 138 278   4.253

 

Bearing No. Dimensions (mm) Solid Eccentric Basic Load Rating(KN) Limited Mass
Speed
Without Seals Sealed Type D C B B1 G1 d1 B3 e C Co rpm kg
CFE-1/2-B CFE-1/2-SB 12.7 9.53 26.19 15.88 6.35 6.35 9.53 0.25 3.84 4.4 12000 0.011
CFE-9/16-B CFE-9/16-SB 14.29 9.53 26.19 15.88 6.35 6.35 9.53 0.25 4.3 5.3 10000 0.016
CFE-5/8-B CFE-5/8-SB 15.88 11.11 30.96 19.05 7.94 9.53 11.11 0.38 5.2 7 8800 0.571
CFE-11/16-B CFE-11/16-SB 17.46 11.11 30.96 19.05 7.94 9.53 11.11 0.38 6.5 8.5 8000 0.033
CFE-3/4-B CFE-3/4-SB 19.05 12.7 35.72 22.23 9.53 12.7 12.7 0.38 7.12 10 6400 0.042
CFE-7/8-B CFE-7/8-SB 22.23 12.7 35.72 22.23 9.53 12.7 12.7 0.38 7.12 10 6400 0.054
CFE-1-B CFE-1-SB 25.4 15.88 42.07 25.4 12.7 15.88 12.7 0.76 10.64 18.5 5200 0.086
CFE-1 1/8-B CFE-1 1/8-SB 28.58 15.88 42.07 25.4 12.7 15.88 12.7 0.76 10.64 18.5 5200 0.097
CFE-1 1/4-B CFE-1 1/4-SB 31.75 19.05 51.59 31.75 15.88 17.46 15.88 0.76 19.2 25.9 4400 0.154
CFE-1 3/8-B CFE-1 3/8-SB 34.93 19.05 51.59 31.75 15.88 17.46 15.88 0.76 19.2 25.9 4400 0.177
CFE-1 1/2-B CFE-1 1/2-SB 38.1 22.23 61.12 38.1 19.05 22.23 19.05 0.76 23 32.7 3600 0.263
CFE-1 5/8-B CFE-1 5/8-SB 41.28 22.23 61.12 38.1 19.05 22.23 19.05 0.76 23 32.7 3600 0.298
CFE-1 3/4-B CFE-1 3/4-SB 44.45 25.4 70.64 44.45 22.23 25.4 22.23 0.76 28.7 45.4 3200 0.418
CFE-1 7/8-B CFE-1 7/8-SB 47.63 25.4 70.64 44.45 22.23 25.4 22.23 0.76 28.7 45.4 3200 0.466
CFE-2-B CFE-2-SB 50.8 31.75 83.34 50.8 25.4 30.16 25.4 0.76 37.3 65.8 2800 0.705
CFE-2 1/4-B CFE-2 1/4-SB 57.15 31.75 83.34 50.8 25.4 30.16 25.4 0.76 37.3 65.8 2800 0.839
CFE-2 1/2-B CFE-2 1/2-SB 63.5 38.1 96.04 57.15 28.58 34.93 28.58 0.76 54 102.3   1.227
CFE-2 3/4-B CFE-2 3/4-SB 69.85 38.1 96.04 57.15 28.58 34.93 28.58 0.76 54 102.3   1.417
CFE-3-B CFE-3-SB 76.2 44.45 108.7 63.5 31.75 44.45 31.75 1.52 72.3 155   2.095
CFE-3 1/4-B CFE-3 1/4-SB 82.55 44.45 108.7 63.5 31.75 44.45 31.75 1.52 72.3 155   2.36
CFE-3 1/2-B CFE-3 1/2-SB 88.9 50.8 121.4 69.85 34.93 46.04 34.93 1.52 104.8 196.7   3.072
CFE-4-B CFE-4-SB 101.6 57.15 146.8 88.9 38.1 50.8 50.8 1.52 138 278   4.607

 

Bearing No.

Dimensions (mm) Basic Load Rating(KN) Limited Mass
Speed
Hexagon Hole Sealed Type D d C B B1 B2 G1 C Co rpm kg
CFH-1/2-B CFH-1/2-SB 12.7 6.35 9.53 26.19 15.88 6.35 3.84 4.4 12000 0.012
CFH9/16B CFH9/16-SB 14.29 6.35 9.53 26.19 15.88 6.35 4.3 5.3 10000 0.015
CFH-5/8-B CFH-5/8-SB 15.88 7.94 11.11 30.96 19.05 7.94 5.2 7 8800 0.571
CFH11/16-B CFH-11/16-SB 17.46 7.94 11.11 30.96 19.05 7.94 6.5 8.5 8000 0.571
CFH-3/4-B CFH-3/4-SB 19.05 11.11 12.7 35.72 22.23 6.35 9.53 7.12 10 6400 0.039
CFH-7/8-B CFH-7/8-SB 22.23 11.11 12.7 35.72 22.23 6.35 9.53 7.12 10 6400 0.049
CFH-1-B CFH-1-SB 25.4 15.88 15.88 42.07 25.4 6.35 12.7 10.64 18.5 5200 0.093
CFH-1 1/8-B CFH-1 1/8-SB 28.58 15.88 15.88 42.07 25.4 6.35 12.7 10.64 18.5 5200 0.109
CFH-1 1/4-B CFH-1 1/4-SB 31.75 19.05 19.05 51.59 31.75 7.94 15.88 19.2 25.9 4400 0.176
CFH-1 3/8-B CFH-1 3/8-SB 34.93 19.05 19.05 51.59 31.75 7.94 15.88 19.2 25.9 4400 0.2
CFH-1 1/2-B CFH-11/2SB 38.1 22.23 22.23 61.12 38.1 9.53 19.05 23 32.7 3600 0.296
CFH-1 5/8-B CFH-1 5/8-SB 41.28 22.23 22.23 61.12 38.1 9.53 19.05 23 32.7 3600 0.329
CFH-1 3/4-B CFH-1 3/4-SB 44.45 25.4 25.4 70.64 44.45 11.11 22.23 28.7 45.4 3200 0.463
CFH-1 7/8-B CFH-1 7/8-SB 47.63 25.4 25.4 70.64 44.45 11.11 22.23 28.7 45.4 3200 0.508
CFH-2-B CFH-2-SB 50.8 28.58 31.75 83.34 50.8 12.7 25.4 37.3 65.8 2800 0.722
CFH-2 1/4-B CFH-2 1/4-SB 57.15 28.58 31.75 83.34 50.8 12.7 25.4 37.3 65.8 2800 0.858
CFH-2 1/2-B CFH-2 1/2-SB 63.5 31.75 38.1 96.04 57.15 14.29 28.58 54 102.3   1.26
CFH-2 3/4-B CFH-2 3/4-SB 69.85 31.75 38.1 96.04 57.15 14.29 28.58 54 102.3   1.46
CFH-3-B CFH-3-SB 76.2 38.1 44.45 108.7 63.5 15.88 31.75 72.3 155   2.031
CFH-3 1/4-B CFH-3 1/4-SB 82.55 38.1 44.45 108.7 63.5 15.88 31.75 72.3 155   2.291
CFH-3 1/2-B CFH-3 1/2-SB 88.9 44.45 50.8 121.4 69.85 17.46 34.93 104.8 196.7   3.13
CFH-4-B CFH-4-SB 101.6 50.8 57.15 146.8 88.9 19.05 38.1 138 278   4.75
  CFH-5-SB 127 63.5 69.85 200 128.6 22.23 65.07 214 422   9.54
  CFH-6-SB 152.4 76.2 82.55 236.5 152.4 25.4 76.2 276 500   16.2
  CFH-7-SB 177.8 88.9 95.25 292 195.25 31.75 104.8 347 665   24.6

 

Workshop

 

Packaging & Shipping

Bearings Package:

    1):Inner Plastic Bag+ Paper Box + Carton(+Pallet)

    2):Small sizes:Plastic Tube + Carton

    3):Big sizes:Wooden Case

 

Bearings Lead time:

   We will prepare your order as soon as possible

    1)2-3 days for ex-stock

    2)7-20 days for others

 

 Shipping & Delivery time:

   1) Less than 45 Kg:DHL TNT Fedex UPS express will be better,( 4-7 days delivered to your address)

   2) Between 45 to 200 Kg:Air transiportation will be better,( 5-14 days delivered to your airport)

   3) Over 200 Kg:Sea transportation will be better.( Cheapest,18-45 days to your port ).

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rows Number: Single
Material: Gcr15
Precision: P0 P6 P5 P4 P2
Clearance: C0 C2 C3 C4 C5
Vibration: Z1V1 Z2V2 Z3V3
Lubricated: Oil or Grease
Customization:
Available

|

Customized Request

track bearing

What are the benefits of using self-lubricating or maintenance-free track bearings?

Using self-lubricating or maintenance-free track bearings can offer several significant benefits in terms of convenience, performance, and cost-effectiveness. Let’s explore the advantages of utilizing self-lubricating or maintenance-free track bearings:

  • Elimination of External Lubrication: One of the primary advantages of self-lubricating or maintenance-free track bearings is that they eliminate the need for external lubrication. These bearings are pre-lubricated with a solid lubricant or have a built-in lubrication system that provides a continuous supply of lubrication to the bearing surfaces. This eliminates the requirement for manual lubrication or periodic re-lubrication, saving time and effort in maintenance tasks.
  • Extended Service Life: Self-lubricating or maintenance-free track bearings are designed to provide long service life. The presence of a solid lubricant or a self-lubricating material within the bearing helps reduce friction, wear, and the risk of surface damage. This results in improved durability and extended service life, reducing the frequency of bearing replacements and downtime for maintenance.
  • Reduced Contamination and Cleanliness: External lubricants, such as grease or oil, can attract and accumulate contaminants, such as dust, dirt, or debris. In contrast, self-lubricating or maintenance-free track bearings minimize the risk of contamination since they do not require additional lubricants. This helps maintain a cleaner operating environment and reduces the potential for bearing failure due to contamination-related issues.
  • Improved Reliability and Performance: Self-lubricating or maintenance-free track bearings offer consistent and reliable performance throughout their service life. The presence of an effective lubrication system ensures proper lubrication even under demanding operating conditions, such as high temperatures or high loads. This contributes to smoother and more predictable motion, reduced friction, and enhanced overall performance of the machinery or equipment.
  • Cost Savings: While self-lubricating or maintenance-free track bearings may have a higher initial cost compared to standard bearings, they can result in cost savings over the long term. The elimination of manual lubrication and the extended service life of these bearings reduce maintenance requirements, labor costs, and the need for lubrication supplies. Additionally, the increased reliability and performance can minimize downtime and associated production losses.
  • Ease of Installation: Self-lubricating or maintenance-free track bearings are typically designed for easy installation. They often come pre-assembled, pre-lubricated, or with integral lubrication systems, simplifying the installation process. This can save time and effort during initial setup or replacement of bearings in machinery or equipment.

Overall, self-lubricating or maintenance-free track bearings offer the advantages of reduced maintenance, extended service life, improved reliability, and cost savings. These bearings are particularly beneficial in applications where regular lubrication is challenging, time-consuming, or not feasible, or in environments where contamination control is critical.

track bearing

Are there potential challenges or limitations in using track bearings in specific industries?

While track bearings are widely used in various industries for their ability to support linear motion and handle heavy loads, there can be potential challenges and limitations associated with their use in specific industries. Here’s a detailed explanation:

1. Contamination and Harsh Environments:

Industries such as mining, construction, and agriculture often operate in harsh environments with high levels of contamination, including dust, dirt, and moisture. These contaminants can enter the track bearings and cause accelerated wear, reduced performance, and potential failure. Regular maintenance and appropriate sealing measures are required to mitigate these challenges.

2. High-Temperature Environments:

In industries like metal processing, glass manufacturing, and foundries, track bearings may be exposed to high temperatures. Excessive heat can affect the lubrication properties and structural integrity of bearings, leading to premature failure. Selecting track bearings specifically designed for high-temperature applications and using suitable lubricants are necessary to overcome this limitation.

3. Corrosive Chemicals:

Industries such as chemical processing, food and beverage, and wastewater treatment involve exposure to corrosive chemicals. Corrosion can significantly affect the performance and lifespan of track bearings. Choosing bearings made from corrosion-resistant materials or applying protective coatings can help address this challenge.

4. Heavy Load and Impact:

Industries like material handling, mining, and construction often require track bearings to withstand heavy loads and frequent impacts. Excessive load or impact can lead to premature wear, deformation, or even catastrophic failure of the bearings. Selecting track bearings with appropriate load capacities and impact resistance is crucial in these industries.

5. Precision and Accuracy:

In industries such as robotics, semiconductor manufacturing, and precision machining, track bearings may need to meet stringent requirements for precision and accuracy. Any deviation or play in the bearings can impact the overall performance and quality of the process. Using high-precision track bearings and ensuring proper alignment and installation are essential in these cases.

6. Speed and Acceleration:

Applications involving high-speed or rapid acceleration, such as automated assembly lines or conveyor systems, can impose additional challenges on track bearings. Excessive speed or acceleration can generate heat and vibration, leading to increased wear and reduced bearing life. Choosing track bearings with suitable speed and acceleration ratings is vital in these industries.

It is important to consult with bearing manufacturers or industry experts to identify and address any potential challenges or limitations specific to the industry and application at hand. By understanding these challenges and selecting track bearings designed to overcome them, industries can optimize performance, reliability, and longevity while mitigating risks and ensuring smooth operation.

track bearing

What are track bearings, and how are they used in various applications?

Track bearings, also known as track rollers or track follower bearings, are specialized rolling bearings designed to operate in track-based systems. They are used in various applications that require guided linear or rotational motion. Let’s explore in detail the characteristics of track bearings and their common applications:

  • Design and Construction: Track bearings typically consist of an outer ring, an inner ring, a set of rolling elements (such as rollers or needles), and a cage that holds the rolling elements together. The outer ring features a track or guide surface, while the inner ring is mounted on a shaft or stud. The rolling elements facilitate smooth rolling motion along the track, allowing for linear or rotational movement.
  • Guided Motion: Track bearings are primarily used to provide guided motion in applications where components need to move along a defined path or track. The outer ring’s track surface interfaces with the track or guide rail, ensuring precise and controlled motion. This guided motion is crucial in various applications such as material handling systems, conveyors, cam mechanisms, and automated machinery.
  • Load Support: Track bearings are designed to support and distribute loads, both radial and axial, in track-based systems. They can handle substantial loads while maintaining smooth motion and minimizing friction. The load-carrying capacity of track bearings makes them suitable for applications involving heavy loads, such as construction equipment, agricultural machinery, and industrial automation systems.
  • Multiple Types: Track bearings come in various types to suit different application requirements. Some common types include yoke type track rollers, stud type track rollers, and cam followers. Yoke type track rollers have thick outer rings and can withstand high radial loads. Stud type track rollers have a stud instead of an inner ring and are suitable for applications with limited space. Cam followers have a stud with a built-in roller and are commonly used in cam-driven systems.
  • Sealing and Contamination Protection: In many applications, track bearings are exposed to harsh environments and contaminants. To ensure reliable operation, track bearings often incorporate sealing arrangements or protective coatings. These features help prevent the ingress of dust, dirt, moisture, or other contaminants, prolonging the bearing’s service life and reducing the risk of premature failure.
  • Various Applications: Track bearings find applications in a wide range of industries and systems. Some common applications include:
    • Material Handling Systems: Track bearings are used in conveyors, roller tracks, and overhead cranes to facilitate smooth and guided movement of materials.
    • Automated Machinery: Track bearings are employed in automated machines and robotic systems for precise motion control and positioning.
    • Cam Mechanisms: Track bearings are utilized in cam-driven systems, where they follow the profile of the cam and translate the rotary motion into linear or oscillating motion.
    • Construction Equipment: Track bearings are found in construction machinery, such as excavators, bulldozers, and compactors, to support the tracks or guide wheels.
    • Agricultural Machinery: Track bearings are used in agricultural equipment, including tractors, combines, and harvesters, to support the tracks or guide wheels and provide reliable movement.
    • Printing and Packaging Machinery: Track bearings are employed in printing presses, packaging machines, and labeling systems to ensure precise and guided movement of the printing heads, packaging materials, or labels.

In summary, track bearings are specialized rolling bearings designed for guided linear or rotational motion along a track or guide rail. They provide precise motion control, support substantial loads, and find applications in various industries such as material handling, automation, construction, agriculture, printing, and packaging. With their ability to facilitate guided motion and handle significant loads, track bearings contribute to the smooth and reliable operation of track-based systems in a wide range of applications.

China best Inch Size Track Rollers, Stud Type Cam Follower Bearings (CF-1/2-N-SB, CF-1/2-SB, CF-9/16-SB, CF-5/8-N-SB, CF-5/8-SB)   bearing driverChina best Inch Size Track Rollers, Stud Type Cam Follower Bearings (CF-1/2-N-SB, CF-1/2-SB, CF-9/16-SB, CF-5/8-N-SB, CF-5/8-SB)   bearing driver
editor by CX 2024-05-02

China OEM High Precision CZPT Cft12 Cft12uu Cft12-1uu Stud Type Track Roller Bearings deep groove ball bearing

Product Description

Hot products

Detail photo

Warehouse

Catalogue

THK Cam Follower Bearing Model

 

CF type CF5UU CF6UU CF8UU CF10UU CF10-1UU CF12 CF12-1UU CF16UU CF18UU CF20UU 
CF20-1UU CF24 CF24-1UU CF30 CF30-1UU CF30-2UU
CF-M type CF5MUU CF6MUU CF8MUU CF10MUU CF10-1MUU CF12MUU CF12-1MUU CF16MUU 
CF20MUU CF20-1MUU CF24MUU CF24-1MUU CF30MUU CF30-1MUU CF30-2MUU
CF-UUR type CF5UUR CF6UUR CF8UUR CF10UUR CF10-1UUR CF12UUR CF12-1UUR CF16UUR 
CF20UUR CF20-1UUR CF24UUR CF24-1UUR CF30UUR CF30-1UUR CF30-2UUR
CF5-MUUR type CF5MUUR CF6MUUR CF8MUUR CF10MUUR CF10-1MUUR CF12MUUR CF12-1MUUR 
CF16MUUR CF20MUUR CF20-1MUUR CF24MUUR CF24-1MUUR CF30MUUR
CF30-1MUUR CF30-2MUUR
CF-A type CF5UU-A CF6UU-A CF8UU-A CF10UU-A CF10-1UU-A CF12UU-A CF12-AUU-A CF16UU-A 
CF20UU-A CF20-1UU-A CF24UU-A CF24-1UU-A CF30UU-A CF30-AUU-A CF30-2UU-A
CF-MUU-A type CF5MUU-A CF6MUU-A CF8MUU-A CF10MUU-A CF10-1MUU-A CF12MUU-A 
CF12-1MUU-A CF16MUU-A CF20-1MUU-A CF24MUU-A CF24-1MUU-A CF30MUU-A 
CF30-1MUU-A CF30-2MUU-A
CF-UUR-AB type CF5UUR-A CF6UUR-A CF8UUR-A CF10UUR-A CF10-1UUR-A CF12UUR-A CF12-1UUR-A 
CF16UUR-A CF18UUR-A CF20-1UUR-A CF24UUR-A CF24-1UUR-A CF30UUR-A 
CF30-1UUR-A CF30-2UUR-A
CF-MUUR-A type CF5MUUR-A CF6MUUR-A CF8MUUR-A CF10MUUR-A CF10-1MUUR-A CF12MUUR-A 
CF12-1MUUR-A CF16MUUR-A CF18MUUR-A CF20MUUR-A CF20-1MUUR-A
CF24MUUR-A CF30MUUR-A CF30-UUR-A CF30-2MUUR-A
CF-UU-B type CF12UU-B CF12-1UU-B CF16UU-B CF18UU-B CF20UU-B CF20-1UU-B CF24UU-B 
CF24-1UU-B CF30UU-B CF30-1UU-B CF30-2UU-B
CF-MUUR-B type CF12MUUR-B CF12-1MUU-B CF16MUUR-B CF18MUUR-B CF20MUUR-B CF20-1MUUR-B CF24MUUR-B CF24-1MUUR-B CF30MUUR-B CF30-1MUUR-B CF30-2MUUR-B
CFH-UU-A type CFH6UU-A CFH8UU-A CFH10UU-A CFH10-1UU-A CFH12UU-A CFH12-1UU-A CFH16UU-A CFH18UU-A CFH20UU-A CFH20-1UU-A CFH24UU-A CFH24-1UU-A CFH30UU-A 
CFH30-1UU-A CFH30-2UU-A
CFH-UUR-A type CFH6UUR-A CFH8UUR-A CFH10UUR-A CFH10-1UUR-A CFH12UUR-A CFH12-1UUR-A 
CFH16UUR-A CFH18UUR-A CFH20UUR-A CFH20-1UUR-A CFH24UUR-A CFH24-1UUR-A CFH30UUR-A CFH30-1UUR-A CFH30-2UUR-A
CFN-R-A type CFN5R-A CFN6R-A CFN8R-A CFN10R-A CFN12R-A
CFT type CFT6UU CFT8UU CFT10UU CFT12UU CFT10-1UU CFT12-1UU CFT16UU CFT18UU 
CFT20UU CFT20-1UU CFT24UU CFT24-1UU CFT30UU CFT30-1UU CFT30-2UU
CFT-UUR type CFT6UUR CFT8UUR CFT10UUR CFT10-1UUR CFT12UUR CFT12-1UUR CFT16UUR 
CFT18UUR CFT20UUR CFT20-1UUR CFT24UUR CFT24-1UUR CFT30UUR CFT30-1UUR 
CFT30-2UUR
CFH-MUU-A type CFH6MUU-A CFH6MUUR-A CFH6UU-A CFH6UUR-A CFH8MUU-A CFH8MUUR-A 
CFH8UU-A CFH8UUR-A CFH10-1MUU-A CFH10-1MUUR-A CFH10-1UU-A CFH10-1UUR-A CFH10MUU-A CFH10MUUR-A CFH10UU-A CFH10UUR-A CFH12-1MUU-A 
CFH12-1MUUR-A CFH12-1UU-A CFH12-1UUR-A CFH12MUU-A CFH12MUUR-A 
CFH12UU-A CFH12UUR-A CFH16MUU-A CFH16MUUR-A CFH16UU-A CFH16UUR-A 
CFH18MUU-A CFH18MUUR-A CFH18UU-A CFH18UUR-A CFH20-1UU-A CFH20-1UUR-A CFH20MUU-A CFH20MUUR-A CFH20UU-A CFH20UUR-A CFH24-1UU-A CFH24-1UUR-A 
CFH24UU-A CFH24UUR-A CFH30-1UU-A CFH30-1UUR-A CFH30-2UU-A CFH30-2UUR-A 
CFH30UU-A CFH30UUR-A
CFH-A type CFH6-A | CFH6M-A | CFH6MR-A | CFH6R-A | CFH8-A | CFH8M-A | CFH8MR-A | CFH8R-A| 
CFH10-1-A | CFH10-1M-A | CFH10-1MR-A | CFH10-1R-A| CFH10-A | CFH10M-A | 
CFH10MR-A | CFH10R-A | CFH12-1-A | CFH12-1M-A | CFH12-1MR-A | CFH12-1R-A | 
CFH12-A | CFH12M-A | CFH12MR-A |CFH12R-A | CFH16-A | CFH16M-A | CFH16MR-A | 
CFH16R-A | CFH18-A | CFH18M-A | CFH18MR-A | CFH18R-A | CFH20-1-A | CFH20-1R-A|
CFH20-A | CFH20M-A | CFH20MR-A | CFH20R-A | CFH24-1-A | CFH24-1R-A | CFH24-A | 
CFH24R-A | CFH30-1-A | CFH30-1R-A | CFH30-2-A |CFH30-2R-A | CFH30-A | CFH30R-A
CF-M-A type CF3M-A | CF4M-A | CF5M-A | CF6M-A | CF8M-A | CF10-1M-A | CF10M-A | CF12-1M-A | 
CF12M-A | CF16M-A | CF18M-A | CF20-1M-A | CF20M-A |CF24-1M-A | CF24M-A | 
CF30-1M-A | CF30-2M-A | CF30M-A
CF-MUU-A type CF3MUU-A | CF4MUU-A | CF5MUU-A | CF6MUU-A | CF8MUU-A | CF10-1MUU-A | 
CF10MUU-A | CF12-1MUU-A | CF12MUU-A | CF16MUU-A | CF18MUU-A |CF20-1MUU-A | 
CF20MUU-A | CF24-1MUU-A | CF24MUU-A | CF30-1MUU-A | CF30-2MUU-A | CF30MUU-A

 

Workshop

Certifications

Cooperated brand

FAQ 
Q: How do you pack the goods?

  •  Total less than 25 KG :  Each in white box + 19*18*9cm box + 29*28*19CM carton box 
  •  Total Weight over 100KG : Carton box + Wooden Box / Wooden Pallet 

Q: Can i get the samples from you?

A:  It is highly encouraged to ask for the samples for quality check. 

Q: Can you promise to deliver the goods in time?

  •    Small items: In stock. 
  •     Medium Items: 10-15 Days 
  •     Big items: 20-25 Days 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Cage: With Cage
Material: Bearing Steel, Stainess Steel
Quality: Low Noise
Life: Long Life
Price: Factory Price
Factory: Made by Japan THK Company
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

track bearing

Can you provide examples of industries and applications where track bearings are frequently used?

Track bearings find extensive use in various industries and applications where smooth and controlled motion along tracks or guide rails is required. Let’s explore some examples of industries and applications where track bearings are frequently used:

  • Material Handling and Conveying: Track bearings are widely employed in material handling and conveying systems, such as conveyor belts, roller conveyors, and overhead cranes. They facilitate the smooth movement of goods, packages, and components along the tracks, ensuring efficient and reliable transportation within warehouses, distribution centers, manufacturing facilities, and airports.
  • Automotive and Transportation: Track bearings are utilized in various automotive applications, including suspension systems, steering systems, and sliding doors. They enable smooth and precise movement of components, contributing to vehicle performance, comfort, and safety. Additionally, track bearings are used in railway applications, such as railcar doors, sliding mechanisms, and track guidance systems.
  • Aerospace and Defense: Track bearings play a crucial role in aerospace and defense applications, including aircraft landing gears, flap systems, and missile launchers. They provide the necessary support, guidance, and load-carrying capacity for critical components, ensuring smooth and controlled motion in demanding operating conditions.
  • Industrial Machinery: Track bearings are commonly found in various industrial machinery and equipment. They are used in machine tools, robotics, printing presses, industrial ovens, and packaging machines, among others. In these applications, track bearings contribute to precise motion control, accurate positioning, and reliable performance of moving components.
  • Construction and Mining: Track bearings are extensively employed in construction and mining equipment, such as excavators, bulldozers, cranes, and drilling machines. They provide support and guidance for the movable parts, allowing efficient and controlled movement in rugged and demanding environments.
  • Medical and Healthcare: Track bearings are utilized in various medical and healthcare applications. They are used in hospital beds, medical imaging equipment, laboratory automation systems, and patient handling devices. Track bearings enable smooth and quiet operation, precise positioning, and patient comfort in these critical healthcare settings.
  • Renewable Energy: Track bearings are employed in renewable energy systems, including solar tracking systems and wind turbine pitch and yaw mechanisms. They enable the precise tracking of solar panels and the controlled adjustment of wind turbine blades, maximizing energy capture and optimizing system performance.

These examples represent just a fraction of the many industries and applications where track bearings are frequently used. The versatility, reliability, and precise motion control provided by track bearings make them a fundamental component in numerous mechanical systems across various sectors.

track bearing

How do track bearings contribute to the precision, accuracy, and reliability of motion control systems?

Track bearings play a crucial role in enhancing the precision, accuracy, and reliability of motion control systems. They provide several key contributions that ensure smooth and consistent linear motion. Here’s a detailed explanation:

  • Precision Guidance: Track bearings offer precise guidance for linear motion systems. They are designed with close tolerances and accurate geometries, allowing for accurate positioning and control of the moving components. This precision guidance ensures that the desired motion is achieved with minimal deviation or error.
  • Smooth and Consistent Motion: By minimizing friction and providing smooth rolling or sliding surfaces, track bearings enable smooth and consistent motion in motion control systems. They reduce the effects of irregularities, misalignments, or vibrations, resulting in smoother operation and improved accuracy.
  • Repeatable Performance: Track bearings provide repeatable performance in motion control systems. They offer consistent and predictable motion characteristics, allowing for precise and repeatable positioning of the moving components. This repeatability is essential in applications that require high accuracy and consistency, such as CNC machining, semiconductor manufacturing, and precision measurement systems.
  • Load Distribution: Track bearings distribute the load evenly along their length, helping to minimize stress concentrations on specific components. This even load distribution improves the overall stability and reliability of the motion control system. It reduces the risk of component failure, deformation, or excessive wear, contributing to enhanced system reliability.
  • Minimized Play and Backlash: Track bearings are designed to minimize play and backlash, which are undesirable movements or clearances between components. Play and backlash can introduce inaccuracies and reduce the precision of motion control systems. Track bearings with tight tolerances and optimized designs help minimize these undesirable effects, ensuring precise and accurate motion.
  • Stiffness and Rigidity: Track bearings provide stiffness and rigidity to the motion control system. They resist deflection and maintain their shape under load, minimizing any unwanted flexing or bending. This stiffness enhances the overall stability and precision of the system, allowing for precise control and accurate motion even under varying loads or external forces.
  • Resistance to Contamination: Track bearings are often equipped with seals or shields to protect against contaminants such as dirt, dust, or liquids. This protection helps maintain the precision and reliability of the motion control system by preventing the ingress of particles that could interfere with the smooth operation of the bearings or cause premature wear and failure.

By incorporating track bearings into motion control systems, industries can benefit from improved precision, accuracy, and reliability. Whether it’s achieving precise positioning, ensuring consistent and repeatable motion, minimizing play and backlash, or providing reliable load distribution, track bearings contribute to the overall performance and integrity of motion control systems.

track bearing

Can you describe the load-carrying capacity and load ratings of track bearings?

Track bearings are designed to withstand and carry various types of loads while maintaining smooth and controlled motion along a track or guide rail. The load-carrying capacity and load ratings of track bearings are crucial factors to consider when selecting the appropriate bearing for a specific application. Let’s delve into these concepts:

Load-Carrying Capacity:

The load-carrying capacity of a track bearing refers to its ability to support and distribute the applied loads without excessive deformation or failure. It is influenced by several factors, including the bearing’s design, materials, and operating conditions. The load-carrying capacity is typically specified in terms of static load capacity and dynamic load capacity.

The static load capacity indicates the maximum load that a track bearing can support without permanent deformation. It is determined by the bearing’s internal geometry, material strength, and the contact area between the rolling elements and raceways. Static loads are those that do not cause relative motion between the bearing and the track, such as when the bearing is stationary or subjected to a constant load.

The dynamic load capacity represents the maximum load that a track bearing can handle while still allowing smooth rolling motion. It takes into account the bearing’s ability to handle both radial and axial loads and considers factors such as the bearing’s internal clearance, lubrication, and operating speed. Dynamic loads are those that cause relative motion between the bearing and the track, such as when the bearing is subjected to varying loads or subjected to motion along the track.

Load Ratings:

Load ratings provide standardized values that indicate the maximum allowable loads for track bearings based on industry standards. These load ratings are commonly provided by bearing manufacturers and help users select the appropriate bearing for their specific application requirements. The two primary load ratings used for track bearings are the radial load rating and the axial load rating.

The radial load rating specifies the maximum radial load that a track bearing can withstand while maintaining proper performance and service life. It is expressed as a static load rating and a dynamic load rating. The static radial load rating indicates the maximum radial load that the bearing can support without permanent deformation, while the dynamic radial load rating represents the maximum radial load that the bearing can handle under typical operating conditions.

The axial load rating indicates the maximum axial load that a track bearing can withstand without excessive deformation or failure. It considers the applied axial force in the direction perpendicular to the track or guide rail. The axial load rating is typically provided as a static load rating and a dynamic load rating.

It’s important to note that load ratings are based on specific operating conditions, such as a certain speed, lubrication, and temperature. It is necessary to consider the actual operating conditions and factors such as shock loads, vibrations, and misalignments when applying load ratings to real-world applications.

By understanding the load-carrying capacity and load ratings of track bearings, engineers and designers can make informed decisions to ensure reliable and safe performance of the bearings in their applications.

China OEM High Precision CZPT Cft12 Cft12uu Cft12-1uu Stud Type Track Roller Bearings   deep groove ball bearingChina OEM High Precision CZPT Cft12 Cft12uu Cft12-1uu Stud Type Track Roller Bearings   deep groove ball bearing
editor by CX 2024-04-30

China Good quality Manufacturers Direct Sales of High Quality Needle Roller Bearings Nks28 Nks30 Nks32 Automobile Needle Roller Bearing Ball Bearing Track Roller Bearing bearing distributors

Product Description

Parameter:

Product Name needle roller bearing
Brand Name  KSA
Material Gcr15
Precision Grade P0,P6,P5
Certification ISO 9001
Packeage Box /Carton/Wooden Box/Plastic Tube or Per buyers requirement
MOQ Depending On Moedl
Serice OEM
Sample Available
Payment TT or L/C or Western Union
Port HangZhou ZheJiang HangZhou

 

Needle bearings are roller bearings with cylindrical rollers that are thin and long relative to their diameter. Such rollers are called needle rollers. Although it has a small cross-section, the bearing still has a high load-bearing capacity. Needle roller bearings are equipped with thin and long rollers, so the radial structure is compact. When the inner diameter size and load capacity are the same as other types of bearings, the outer diameter is the smallest. It is especially suitable for support structures with limited radial installation dimensions.
Needle bearing is a very important mechanical part, and its application range is very wide. Whether it is automobile, aerospace, machine tool, electric power, metallurgy and other industries, needle roller bearings are needed to support and rotate mechanical parts to ensure the safety and reliability of equipment. Therefore, the quality and performance of needle roller bearings play a vital role in mechanical equipment in all walks of life


Introduction:

Introduce our needle roller bearings to meet your needs!

Want to improve the performance of your industrial machinery? Your search is over! The design of our needle roller bearings offers numerous advantages, making them the perfect choice for your requirements.

1. Excellent accuracy: The precision of our bearings is carefully crafted to ensure minimum friction and optimum performance, thereby increasing the efficiency of your machine.

2. High load capacity: Designed to withstand heavy axial and radial loads, our bearings guarantee reliable operation, even in the most demanding applications.

3. Low maintenance: Say goodbye to frequent downtime and maintenance costs. Our needle roller bearings are durable and reduce the need for replacement.

4. Multi-functional applications: Whether you operate in automotive, manufacturing or any other industry, these bearings are versatile enough to meet a wide range of applications

Bearing classification

Our Advantages

Low noise 
Adopting advanced silent manufacturing technology, the product has the characteristics of low noise, low torque, low temperature rise, and is a high-performance bearing with energy saving and environmental protection. 

High precision
Through the selection of new materials and special structural design, the product has the characteristics of good sealing performance, small running resistance and high rotation accuracy. 

long-life 
Seiko hot rolling and expanding technology and special heat treatment process, improve the bearing high temperature resistance, wear resistance, impact resistance, high load characteristics, improve the reliability and service life of the bearing

Company Profile

 

About us

Specialized production

ZheJiang Kangshi Precision Bearing Manufacturing Co., Ltd., located in Yandian Town Industrial Park, HangZhou City, ZheJiang Province, mainly produces zero deep groove ball bearings, 2 types of cylindrical roller bearings, 3 types of aligning roller bearings, 6 types of angular contact ball bearings, 7 types of tapered roller bearings, 8 types of thrust ball bearings, thrust bearings, 9 types of thrust aligning roller bearings, outer spherical bearings, auto parts, Motorcycle parts and other rolling bearings. Our factory has strong professional technology, good production equipment and perfect testing means, can fully meet the various types, specifications, high precision and special use requirements of bearing products customized processing, the production process of the product according to the strict national standards of enterprise internal control standards for the implementation of full inspection and multi-project comprehensive inspection of factory products, Can ensure the quality of each set of factory bearing products to meet national standards. Kangshi bearing has always implemented national standards, market prices, and implemented the “three guarantees” principle for customers: To ensure high-quality quality, preferential prices, superior after-sales service! Welcome customers at home and abroad to consult and negotiate business, the company will continue to win the trust of more customers with good product quality and reputation.

Scope of application

FAQ

Q: What is the MOQ?
A: It depends on the bearing type. You can send inquiry or send e-mail for more information.
Q: How about the package?
A: Industrial packing in general condition (Plastic drums/boxes/industrial packaging + cartons + pallets). Accept design package when OEM.
Q: How long is the delivery time?
A: It will take about 10 to 40 days, depends on the model and quantity.
Q:What are the advantages of your company’s services compared to other companies?
A: Factory direct supply, price advantage, 24 hours online timely reply, Provide customers with customs clearance 
and quality of various documents, 100% after-sales service
Q:OEM POLICY
A:We can printing your brand (logo,artwork)on the bearings or laser engraving your brand on the bearings.
    We can custom your packaging according to your design All copyright own by clients and we  promised  don’t 
    disclose any info.
Q:How to contact us quickly?
A:Please send us an inquiry or message and leave your other contact information, such as phone number,
     account or account, we will contact you as soon as possible and provide the detailed information
    you need.

             Please feel free to contact us, if you have any other question

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Cage: With Cage
Rows Number: Single
Load Direction: Radial Bearing
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

track bearing

Can you provide examples of industries and applications where track bearings are frequently used?

Track bearings find extensive use in various industries and applications where smooth and controlled motion along tracks or guide rails is required. Let’s explore some examples of industries and applications where track bearings are frequently used:

  • Material Handling and Conveying: Track bearings are widely employed in material handling and conveying systems, such as conveyor belts, roller conveyors, and overhead cranes. They facilitate the smooth movement of goods, packages, and components along the tracks, ensuring efficient and reliable transportation within warehouses, distribution centers, manufacturing facilities, and airports.
  • Automotive and Transportation: Track bearings are utilized in various automotive applications, including suspension systems, steering systems, and sliding doors. They enable smooth and precise movement of components, contributing to vehicle performance, comfort, and safety. Additionally, track bearings are used in railway applications, such as railcar doors, sliding mechanisms, and track guidance systems.
  • Aerospace and Defense: Track bearings play a crucial role in aerospace and defense applications, including aircraft landing gears, flap systems, and missile launchers. They provide the necessary support, guidance, and load-carrying capacity for critical components, ensuring smooth and controlled motion in demanding operating conditions.
  • Industrial Machinery: Track bearings are commonly found in various industrial machinery and equipment. They are used in machine tools, robotics, printing presses, industrial ovens, and packaging machines, among others. In these applications, track bearings contribute to precise motion control, accurate positioning, and reliable performance of moving components.
  • Construction and Mining: Track bearings are extensively employed in construction and mining equipment, such as excavators, bulldozers, cranes, and drilling machines. They provide support and guidance for the movable parts, allowing efficient and controlled movement in rugged and demanding environments.
  • Medical and Healthcare: Track bearings are utilized in various medical and healthcare applications. They are used in hospital beds, medical imaging equipment, laboratory automation systems, and patient handling devices. Track bearings enable smooth and quiet operation, precise positioning, and patient comfort in these critical healthcare settings.
  • Renewable Energy: Track bearings are employed in renewable energy systems, including solar tracking systems and wind turbine pitch and yaw mechanisms. They enable the precise tracking of solar panels and the controlled adjustment of wind turbine blades, maximizing energy capture and optimizing system performance.

These examples represent just a fraction of the many industries and applications where track bearings are frequently used. The versatility, reliability, and precise motion control provided by track bearings make them a fundamental component in numerous mechanical systems across various sectors.

track bearing

How do track bearings enhance the overall efficiency and functionality of linear motion systems?

Track bearings play a crucial role in enhancing the overall efficiency and functionality of linear motion systems. They offer several benefits that contribute to improved performance, increased reliability, and enhanced functionality. Here’s a detailed explanation:

  • Reduced Friction: Track bearings are designed to minimize friction between moving components, allowing for smoother and more efficient linear motion. By reducing friction, they help to optimize the efficiency of the system, reducing energy consumption and minimizing wear on the components.
  • Precision and Stability: Track bearings provide precise guidance and stability to the linear motion system. They ensure accurate and repeatable motion along the intended path, allowing for precise positioning and control. This is particularly important in applications that require high accuracy, such as CNC machines, robotics, and automated assembly lines.
  • Load Distribution: Track bearings distribute the load evenly along their length, allowing for efficient load transfer and reducing the concentration of forces on specific components. This helps to prevent excessive wear, deformation, and premature failure of the system, improving overall reliability and longevity.
  • Handling Heavy Loads: Track bearings are specifically designed to handle heavy loads in linear motion systems. They offer high load capacities and robust construction, enabling them to support and move heavy objects with ease. This capability is essential in industries such as material handling, construction, and transportation.
  • Smooth and Quiet Operation: Track bearings are engineered to provide smooth and quiet operation, minimizing noise and vibrations in the linear motion system. This is especially important in applications where noise reduction and comfort are critical, such as in medical equipment, office automation, and consumer electronics.
  • Versatility and Adaptability: Track bearings come in various designs, sizes, and configurations to accommodate different linear motion system requirements. They can be easily integrated into existing systems or customized to fit specific applications. This versatility allows for greater flexibility and adaptability in designing and implementing linear motion solutions.
  • Maintenance and Serviceability: Track bearings are designed for ease of maintenance and serviceability. They often feature removable components, such as seals or shields, that allow for inspection, cleaning, and lubrication. This simplifies maintenance tasks and reduces downtime, contributing to improved overall system efficiency and uptime.

By incorporating track bearings into linear motion systems, industries can benefit from increased efficiency, improved performance, and enhanced functionality. Whether it’s achieving precise positioning, handling heavy loads, reducing friction, or ensuring smooth operation, track bearings play a vital role in optimizing the overall efficiency and functionality of linear motion systems.

track bearing

How do track bearings compare to other types of bearings like ball bearings or roller bearings?

Track bearings, ball bearings, and roller bearings are all types of rolling bearings used in various applications. Let’s compare track bearings to ball bearings and roller bearings to understand their similarities and differences:

  • Design and Construction: Track bearings, ball bearings, and roller bearings have different designs and constructions. Track bearings, also known as track rollers or track follower bearings, are designed specifically for guided linear or rotational motion along a track or guide rail. They feature an outer ring with a track surface, an inner ring, rolling elements (such as rollers or needles), and a cage. Ball bearings, on the other hand, have spherical rolling elements (balls) sandwiched between inner and outer rings. Roller bearings, as the name suggests, have cylindrical or tapered rolling elements (rollers) between inner and outer rings.
  • Motion and Load Handling: Track bearings are primarily used for guided motion in track-based systems, while ball bearings and roller bearings are used for general rotational or linear motion. Track bearings are designed to support both radial and axial loads and provide smooth and controlled motion along the track. Ball bearings and roller bearings are also capable of supporting radial and axial loads but are typically used in applications where the motion is not constrained to a specific track or guide rail. Roller bearings, with their larger contact area and higher load-carrying capacity, are often preferred for applications with higher loads.
  • Applications: Track bearings are commonly used in applications such as material handling systems, conveyors, cam mechanisms, automated machinery, construction equipment, and agricultural machinery, where guided motion along a track or rail is required. Ball bearings and roller bearings find applications in a wide range of industries and systems, including electric motors, pumps, automotive applications, industrial machinery, and appliances.
  • Friction and Efficiency: Track bearings, ball bearings, and roller bearings all aim to minimize friction and ensure efficient operation. However, due to their different designs and contact surfaces, they exhibit varying levels of friction. Ball bearings typically have lower friction due to point contact between the balls and the raceways. Roller bearings, especially tapered roller bearings, distribute the load over a larger contact area, resulting in slightly higher friction compared to ball bearings. Track bearings, with their track interface, may have slightly higher friction compared to ball bearings or roller bearings due to the rolling elements’ contact with the track surface.
  • Installation and Maintenance: Track bearings, ball bearings, and roller bearings require proper installation and maintenance for optimal performance and longevity. However, track bearings may require additional attention during installation as they need to be properly aligned with the track or guide rail. Regular lubrication and periodic inspection are essential for all types of bearings to ensure smooth operation and prevent premature failure.

In summary, track bearings, ball bearings, and roller bearings have distinct designs and applications. Track bearings are specialized for guided motion along a track or rail, while ball bearings and roller bearings are more versatile and used in a wide range of rotational or linear motion applications. Each type of bearing has its advantages and considerations in terms of load handling, friction, efficiency, and installation requirements. Selecting the appropriate bearing type depends on the specific application requirements, load conditions, motion characteristics, and environmental factors.

China Good quality Manufacturers Direct Sales of High Quality Needle Roller Bearings Nks28 Nks30 Nks32 Automobile Needle Roller Bearing Ball Bearing Track Roller Bearing   bearing distributorsChina Good quality Manufacturers Direct Sales of High Quality Needle Roller Bearings Nks28 Nks30 Nks32 Automobile Needle Roller Bearing Ball Bearing Track Roller Bearing   bearing distributors
editor by CX 2024-04-26

China manufacturer Kr32-PP Stud Type Track Roller Bearings Kr32 Cam Follower Bearing bearing example

Product Description

Product Parameters

Brand : BMT; Luman; OEM Bearing Size : GB/T 276-2013
Bearing Material : Bearing Steel Inner Diameter : 3 – 120 mm
Rolling : Steel balls Outer Diameter : 8 – 220 mm
Cage : Steel; Nylon Width Diameter : 4 – 70 mm
Oil/Grease : Chevron CZPT etc… Clearance : C2; C0; C3; C4
ZZ bearing : White , Yellow etc… Precision : ABEC-1;ABEC-3; ABEC-5
RS bearing : Black , Red,brown etc… Noise Level : Z1/Z2/Z3/Z4
Open bearing : No cover Vibration Level : V1/V2/V3/V4

About us
HangZhou CZPT (D&M) Bearings Co., Ltd. was established in 2005 and  one of leading ball & roller bearing manufacturers & belt, chain, auto-parts exporters in China. It is specialized in research and development for various kinds of high precision, non-noise, long-life bearings, high quality chains, belts, auto-parts and other machinery&transmission products. At present, CZPT has more than 500 employees and produces 50 million sets of bearings annually. Due to our many years of experience and our own manufacturing in HangZhou china bearing town,DEMY has already served thousands of customers around the world.we participate in major professional exhibitions at home and abroad every year.

Good quality control and competitive prices
Each goods is processed by our internal quality management (ISO 9001:2000) with the corresponding testing, such as noise testing, checks of grease application, sealing checks, hardness degree of the steel as well as measurements.

Adherence to delivery dates, flexibility and reliability have had strong foundations in the corporate philosophy for years now.

DEMY is good at offering customer-specific quality at attractive and competitive prices.

Why  Choose  US ?
1.History : DEMY(D&M)BEARING CO., LTD is located in Hemudu Culture Ruins of HangZhou China which has 7000-year-old history. It is specialized in research and development for various kinds of high precision, non-noise, long-life bearings, high quality chains, belts, auto-parts and other machinery&transmission products.

2.Enterprise Scale: The company has manufacturing space of more than 30,000 square meters and has 20 sets of automatic gringding production lines, automatic assembly lines with the annual production capacity of 25 millions sets.

3.Export experience: Our company is 1 of the biggest bearing manufacturers and exporters in china. Our products are sold all over the world, include Europe, North America, the Middle East, Southeast Asia and South America etc.

4.Brand: We have 2 independent brands : CZPT ; Luman bearing.OEM also is accepted.

5.Quality ControlEach goods is processed by our internal quality management (ISO 9001:2000) with the corresponding testing, such as noise testing, checks of grease application, sealing checks, hardness degree of the steel as well as measurements.Adherence to delivery dates, flexibility and reliability have had strong foundations in the corporate philosophy for years now.

6.Service: High quality, good credit and excellent service are the tenet of our company. Customers’satisfaction is our lifeline, as well as our highest honor. We will do our best to meet your requirements, and will do better in the future.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Single
Outer Dimension: 6-120mm
Material: Bearing Steel
Spherical: Non-Aligning Bearings
Load Direction: Radial Bearing
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

track bearing

What are the benefits of using self-lubricating or maintenance-free track bearings?

Using self-lubricating or maintenance-free track bearings can offer several significant benefits in terms of convenience, performance, and cost-effectiveness. Let’s explore the advantages of utilizing self-lubricating or maintenance-free track bearings:

  • Elimination of External Lubrication: One of the primary advantages of self-lubricating or maintenance-free track bearings is that they eliminate the need for external lubrication. These bearings are pre-lubricated with a solid lubricant or have a built-in lubrication system that provides a continuous supply of lubrication to the bearing surfaces. This eliminates the requirement for manual lubrication or periodic re-lubrication, saving time and effort in maintenance tasks.
  • Extended Service Life: Self-lubricating or maintenance-free track bearings are designed to provide long service life. The presence of a solid lubricant or a self-lubricating material within the bearing helps reduce friction, wear, and the risk of surface damage. This results in improved durability and extended service life, reducing the frequency of bearing replacements and downtime for maintenance.
  • Reduced Contamination and Cleanliness: External lubricants, such as grease or oil, can attract and accumulate contaminants, such as dust, dirt, or debris. In contrast, self-lubricating or maintenance-free track bearings minimize the risk of contamination since they do not require additional lubricants. This helps maintain a cleaner operating environment and reduces the potential for bearing failure due to contamination-related issues.
  • Improved Reliability and Performance: Self-lubricating or maintenance-free track bearings offer consistent and reliable performance throughout their service life. The presence of an effective lubrication system ensures proper lubrication even under demanding operating conditions, such as high temperatures or high loads. This contributes to smoother and more predictable motion, reduced friction, and enhanced overall performance of the machinery or equipment.
  • Cost Savings: While self-lubricating or maintenance-free track bearings may have a higher initial cost compared to standard bearings, they can result in cost savings over the long term. The elimination of manual lubrication and the extended service life of these bearings reduce maintenance requirements, labor costs, and the need for lubrication supplies. Additionally, the increased reliability and performance can minimize downtime and associated production losses.
  • Ease of Installation: Self-lubricating or maintenance-free track bearings are typically designed for easy installation. They often come pre-assembled, pre-lubricated, or with integral lubrication systems, simplifying the installation process. This can save time and effort during initial setup or replacement of bearings in machinery or equipment.

Overall, self-lubricating or maintenance-free track bearings offer the advantages of reduced maintenance, extended service life, improved reliability, and cost savings. These bearings are particularly beneficial in applications where regular lubrication is challenging, time-consuming, or not feasible, or in environments where contamination control is critical.

track bearing

What innovations or advancements have been made in track bearing technology?

Track bearing technology has seen several innovations and advancements over the years, driven by the need for improved performance, increased reliability, and enhanced functionality. Here are some notable innovations in track bearing technology:

  • Advanced Materials: The development of new materials has significantly improved the performance and longevity of track bearings. Materials such as ceramic, hybrid ceramics, and high-performance steels offer enhanced strength, corrosion resistance, and temperature stability, making them suitable for demanding applications.
  • Improved Sealing Solutions: Sealing technology has advanced to provide better protection against contaminants, moisture, and other environmental factors. Innovative seal designs and materials, including labyrinth seals, triple lip seals, and specialized coatings, help keep track bearings clean and extend their service life.
  • Enhanced Lubrication: Lubrication plays a crucial role in the performance and lifespan of track bearings. Advancements in lubrication technology, such as the development of high-performance greases and solid lubricants, have improved the efficiency, reliability, and maintenance requirements of track bearings.
  • Integrated Sensor Systems: Track bearings can now incorporate integrated sensor systems to monitor various parameters such as temperature, vibration, and load. These sensors provide real-time data on bearing health and performance, enabling predictive maintenance strategies and early detection of potential issues.
  • Smart Bearing Technology: Smart bearing technology combines sensor systems with advanced data analytics and connectivity capabilities. These bearings can communicate wirelessly with monitoring systems, enabling remote monitoring, condition-based maintenance, and optimization of operational parameters for improved performance and efficiency.
  • Design Optimization: Computer-aided design (CAD) and finite element analysis (FEA) tools have revolutionized the design process for track bearings. These tools allow for precise modeling, simulation, and optimization of bearing geometries, materials, and load capacities, resulting in improved performance, reduced weight, and enhanced reliability.
  • Application-Specific Customization: With advancements in manufacturing processes, track bearings can now be customized to meet the specific requirements of different applications. Manufacturers can tailor bearing designs, materials, and coatings to optimize performance, reliability, and compatibility with unique operating conditions.

These innovations and advancements in track bearing technology have collectively contributed to improved performance, extended service life, and enhanced functionality in a wide range of industries and applications. They continue to drive progress in the field, enabling track bearings to meet the evolving demands of modern industrial systems.

track bearing

How do track bearings contribute to smooth and precise motion in machinery and equipment?

Track bearings play a crucial role in enabling smooth and precise motion in machinery and equipment. They provide support and guidance for moving components, allowing them to move along tracks or guide rails with minimal friction and accurate positioning. Let’s explore how track bearings contribute to smooth and precise motion:

  • Reduced Friction: Track bearings are designed to minimize friction between the rolling elements (such as balls or rollers) and the raceways (inner and outer rings). By reducing friction, track bearings help to minimize energy losses, prevent excessive heat generation, and extend the lifespan of the bearing and other components in the system. Low friction enables smoother and more efficient motion, resulting in improved overall performance.
  • Accuracy and Precision: Track bearings are manufactured to precise tolerances, ensuring consistent dimensions and smooth surfaces. This precision contributes to accurate and repeatable positioning of the moving components along the track or guide rail. It allows machinery and equipment to achieve the desired motion with minimal deviation or backlash, enabling precise control and operation.
  • Load Distribution: Track bearings are designed to distribute loads evenly across the rolling elements and raceways. This load distribution helps prevent localized stress concentrations and ensures that the applied loads are shared by multiple contact points. By distributing the loads effectively, track bearings enhance the stability and integrity of the moving components, reducing the risk of premature wear or failure.
  • Guidance and Alignment: Track bearings provide guidance and alignment for the moving components. They help maintain the desired orientation and position of the components along the track or guide rail, preventing misalignment and unwanted movements. This guidance ensures smooth and precise motion, minimizing vibrations, noise, and the risk of component damage or malfunction.
  • Shock and Impact Absorption: Track bearings are designed to absorb shocks and impacts that may occur during operation. They help cushion the effects of sudden loads or vibrations, protecting the moving components and reducing the transmission of these forces to the rest of the machinery or equipment. This shock absorption capability contributes to smoother and more stable motion, enhancing overall performance and reliability.

By incorporating high-quality track bearings into machinery and equipment, engineers can achieve smooth and precise motion, improving the efficiency, accuracy, and longevity of the system. Proper selection, installation, and maintenance of track bearings are essential to ensure optimal performance and to minimize the risk of issues such as excessive wear, misalignment, or loss of motion control.

China manufacturer Kr32-PP Stud Type Track Roller Bearings Kr32 Cam Follower Bearing   bearing exampleChina manufacturer Kr32-PP Stud Type Track Roller Bearings Kr32 Cam Follower Bearing   bearing example
editor by CX 2024-04-26