Tag Archives: rail bearing

China Custom Sliding Gate Wheels Bearing Rigid Caster with Bracket for V Track Rail bearing assembly

Product Description

V Groove Wheel Sliding Gate Rollers Pressure Bearing Pully Rollers

Products  name

Sliding Gate Wheels
Width 16mm
Diameter

78mm

Material

Galvanized steel

Load Capacity

660 lbs

Color

All colors available

Surface treatment 

Powder coating

Delivery  date

Normally ready goods and stock winthin 15 days for door hanger wheel 

Application

Aluminum windows , shower blocks, hanging round, closet wheel, toys, etc

Package

Industrial package or according to buyers’ requirement for door hanger wheel

Details

Features:1.Easy to be installed
               2.Low coefficient of friction
               3.High quality and competitive prices

At CZPT Hardware Co., Ltd, we have 10 years of experience in manufacturing OEM/ODM door hardware and furniture and we have 7 years of export experience, door handle and other types of door hardware and furniture hardware. Due to this experience and the expertise of our R&D staff, we can develop a new product based on your specifications in as fast as 2 days – with average times of just 7 days.

Turning out 100, 000 Products Monthly

Our factory covers an area of 10 acres, with 60-70 workers and 29 automatic machines. We have 29 sets automatic machines, including 2 pipe cutting machines, 2 pipe bending machines, 4 spot welding machines, 4 stamping machines, 1 automatic screw packing machine, 16 polishing machines, 2 CNC machines and 1 laser LOGO machine. And, we can guarantee completion of your orders in 30 to 45 days. To see your door hardware and furniture hardware designs brought to life fast, contact us today.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 1 Year
Certification: CE
Splittable: Splittable
Surface Treatment: Chrome Plated
Material: Alloy
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

track bearing

What are the considerations for selecting the right track bearings for a particular application?

Selecting the right track bearings for a particular application requires careful consideration of various factors to ensure optimal performance, reliability, and longevity. Here are the key considerations to keep in mind:

  • Load Requirements: Assess the expected load conditions in the application. Consider both the static and dynamic loads that the track bearings will need to support. Determine the maximum load capacity required to ensure that the selected bearings can handle the anticipated loads without premature failure or excessive wear.
  • Speed and Acceleration: Evaluate the speed and acceleration requirements of the application. Higher speeds and rapid accelerations can impose additional stresses on the track bearings. Choose bearings with suitable speed and acceleration ratings to ensure they can operate effectively within the desired range without compromising performance or causing premature wear.
  • Environmental Factors: Consider the operating environment of the application. Evaluate factors such as temperature extremes, moisture, dust, chemicals, and potential exposure to corrosive substances. Select track bearings that are designed to withstand the specific environmental conditions to ensure optimal performance and longevity.
  • Track and Rail Compatibility: Assess the compatibility of the track bearings with the existing track or rail system. Consider factors such as track geometry, dimensional requirements, and mounting options. Ensure that the selected bearings are suitable for the specific track or rail design to facilitate proper installation, alignment, and smooth operation.
  • Maintenance and Lubrication: Evaluate the maintenance and lubrication requirements of the track bearings. Consider factors such as the need for regular maintenance, lubrication intervals, and the availability of suitable lubricants. Choose bearings that align with the desired maintenance practices and provide appropriate lubrication options based on the application’s operational demands.
  • Expected Lifespan and Reliability: Determine the desired lifespan and reliability expectations for the track bearings. Consider factors such as the projected operating hours, duty cycles, and the criticality of the application. Select bearings from reputable manufacturers known for producing high-quality, reliable products that align with the expected lifespan and reliability requirements.
  • Cost Considerations: Evaluate the cost-effectiveness of the track bearings. Consider the initial purchase cost as well as the long-term costs associated with maintenance, replacement, and potential downtime. Strive for a balance between the upfront investment and the overall value provided by the bearings in terms of performance, reliability, and longevity.

It is essential to consult with bearing manufacturers or industry experts who can provide guidance and recommendations based on the specific application requirements. By considering these factors and seeking expert advice, you can select the right track bearings that best meet the needs of your particular application.

track bearing

How do track bearings contribute to the precision, accuracy, and reliability of motion control systems?

Track bearings play a crucial role in enhancing the precision, accuracy, and reliability of motion control systems. They provide several key contributions that ensure smooth and consistent linear motion. Here’s a detailed explanation:

  • Precision Guidance: Track bearings offer precise guidance for linear motion systems. They are designed with close tolerances and accurate geometries, allowing for accurate positioning and control of the moving components. This precision guidance ensures that the desired motion is achieved with minimal deviation or error.
  • Smooth and Consistent Motion: By minimizing friction and providing smooth rolling or sliding surfaces, track bearings enable smooth and consistent motion in motion control systems. They reduce the effects of irregularities, misalignments, or vibrations, resulting in smoother operation and improved accuracy.
  • Repeatable Performance: Track bearings provide repeatable performance in motion control systems. They offer consistent and predictable motion characteristics, allowing for precise and repeatable positioning of the moving components. This repeatability is essential in applications that require high accuracy and consistency, such as CNC machining, semiconductor manufacturing, and precision measurement systems.
  • Load Distribution: Track bearings distribute the load evenly along their length, helping to minimize stress concentrations on specific components. This even load distribution improves the overall stability and reliability of the motion control system. It reduces the risk of component failure, deformation, or excessive wear, contributing to enhanced system reliability.
  • Minimized Play and Backlash: Track bearings are designed to minimize play and backlash, which are undesirable movements or clearances between components. Play and backlash can introduce inaccuracies and reduce the precision of motion control systems. Track bearings with tight tolerances and optimized designs help minimize these undesirable effects, ensuring precise and accurate motion.
  • Stiffness and Rigidity: Track bearings provide stiffness and rigidity to the motion control system. They resist deflection and maintain their shape under load, minimizing any unwanted flexing or bending. This stiffness enhances the overall stability and precision of the system, allowing for precise control and accurate motion even under varying loads or external forces.
  • Resistance to Contamination: Track bearings are often equipped with seals or shields to protect against contaminants such as dirt, dust, or liquids. This protection helps maintain the precision and reliability of the motion control system by preventing the ingress of particles that could interfere with the smooth operation of the bearings or cause premature wear and failure.

By incorporating track bearings into motion control systems, industries can benefit from improved precision, accuracy, and reliability. Whether it’s achieving precise positioning, ensuring consistent and repeatable motion, minimizing play and backlash, or providing reliable load distribution, track bearings contribute to the overall performance and integrity of motion control systems.

track bearing

Can you describe the load-carrying capacity and load ratings of track bearings?

Track bearings are designed to withstand and carry various types of loads while maintaining smooth and controlled motion along a track or guide rail. The load-carrying capacity and load ratings of track bearings are crucial factors to consider when selecting the appropriate bearing for a specific application. Let’s delve into these concepts:

Load-Carrying Capacity:

The load-carrying capacity of a track bearing refers to its ability to support and distribute the applied loads without excessive deformation or failure. It is influenced by several factors, including the bearing’s design, materials, and operating conditions. The load-carrying capacity is typically specified in terms of static load capacity and dynamic load capacity.

The static load capacity indicates the maximum load that a track bearing can support without permanent deformation. It is determined by the bearing’s internal geometry, material strength, and the contact area between the rolling elements and raceways. Static loads are those that do not cause relative motion between the bearing and the track, such as when the bearing is stationary or subjected to a constant load.

The dynamic load capacity represents the maximum load that a track bearing can handle while still allowing smooth rolling motion. It takes into account the bearing’s ability to handle both radial and axial loads and considers factors such as the bearing’s internal clearance, lubrication, and operating speed. Dynamic loads are those that cause relative motion between the bearing and the track, such as when the bearing is subjected to varying loads or subjected to motion along the track.

Load Ratings:

Load ratings provide standardized values that indicate the maximum allowable loads for track bearings based on industry standards. These load ratings are commonly provided by bearing manufacturers and help users select the appropriate bearing for their specific application requirements. The two primary load ratings used for track bearings are the radial load rating and the axial load rating.

The radial load rating specifies the maximum radial load that a track bearing can withstand while maintaining proper performance and service life. It is expressed as a static load rating and a dynamic load rating. The static radial load rating indicates the maximum radial load that the bearing can support without permanent deformation, while the dynamic radial load rating represents the maximum radial load that the bearing can handle under typical operating conditions.

The axial load rating indicates the maximum axial load that a track bearing can withstand without excessive deformation or failure. It considers the applied axial force in the direction perpendicular to the track or guide rail. The axial load rating is typically provided as a static load rating and a dynamic load rating.

It’s important to note that load ratings are based on specific operating conditions, such as a certain speed, lubrication, and temperature. It is necessary to consider the actual operating conditions and factors such as shock loads, vibrations, and misalignments when applying load ratings to real-world applications.

By understanding the load-carrying capacity and load ratings of track bearings, engineers and designers can make informed decisions to ensure reliable and safe performance of the bearings in their applications.

China Custom Sliding Gate Wheels Bearing Rigid Caster with Bracket for V Track Rail   bearing assemblyChina Custom Sliding Gate Wheels Bearing Rigid Caster with Bracket for V Track Rail   bearing assembly
editor by CX 2024-05-15

China manufacturer PMI MSA30S Linear Guide Rail Heavy Duty Track Rollers Bearings and Carriage deep groove ball bearing

Product Description

Product Description

PMI MSA30S Linear Xihu (West Lake) Dis. Rail Heavy Duty Track Rollers Bearings and Carriage
Features
The trains of balls are designed to a contact angle of 45° which enables it to bear an equal load in radial, reversed radial and lateral directions. Therefore, it can be applied in any installation direction. Furthermore, MSA series can achieve a well balanced preload for increasing rigidity in 4 directions while keeping a low frictional resistance. This is especially suit to high precision and high rigidity required motion.
The patent design of lubrication route makes the lubricant evenly distribute in each circulation loop. Therefore, the optimum lubrication can be achieved in any installation direction, and this promotes the performance in running accuracy, service life, and reliability.

Characteristics
• High Rigidity, Four-way Equal Load
• Self Alignment Capability
• Smooth Movement with Low Noise
• Interchangeability

Mode

PMI 

Material

Carbon Steel

   Related models     MSA15/20/25/30/35/45/55/65 S — LS

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Warehouse Crane, Shipboard Crane, Goods Yard Crane, Building Crane, Workshop Crane, CNC Machine
Material: Steel
Structure: CNC Machine
Installation: Automation Equipment
Driven Type:
Carrying Capacity: Weight Level
Samples:
US$ 29/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

track bearing

Can track bearings be customized or modified for specific track or linear motion applications?

Yes, track bearings can be customized or modified to meet specific requirements of track or linear motion applications. Manufacturers often offer a range of options and capabilities to tailor track bearings to the unique needs of different industries and applications. Here are some ways in which track bearings can be customized or modified:

  • Size and Dimensional Variations: Track bearings can be customized in terms of size, diameter, width, and overall dimensions to fit specific track or linear motion systems. Manufacturers can provide bearings with varying sizes and load capacities to accommodate different application requirements.
  • Material Selection: Track bearings can be manufactured from various materials depending on the specific application’s demands. Common materials include steel, stainless steel, ceramic, and polymer composites. Material selection can be customized to achieve desired properties such as corrosion resistance, high temperature tolerance, or low friction.
  • Sealing and Protection: In applications where track bearings are exposed to contaminants, moisture, or harsh environments, customized sealing and protection features can be added. These may include additional seals, shields, or coatings to enhance the bearing’s resistance to dust, water, chemicals, or extreme temperatures.
  • Lubrication Options: While self-lubricating or maintenance-free track bearings offer convenience, applications with specific lubrication requirements may benefit from customized lubrication options. Manufacturers can modify the bearing design to accommodate external lubrication systems or provide alternative lubrication methods to meet the unique demands of the application.
  • Specialized Load and Speed Ratings: In certain applications, track bearings may need to handle exceptionally high loads or operate at high speeds. Manufacturers can customize the bearing design to offer specialized load and speed ratings to ensure optimal performance and reliability in such demanding conditions.
  • Mounting and Attachment Options: Track bearings can be customized with different mounting and attachment options to facilitate easy installation and integration into specific track or linear motion systems. This may include variations in bolt hole patterns, flange designs, or specialized mounting arrangements.
  • Track Geometry Compatibility: Track bearings can be designed or modified to match specific track or guide rail geometries. This ensures proper fit, alignment, and smooth operation along the designated track, minimizing the risk of misalignment or issues related to track compatibility.

It is important to work closely with bearing manufacturers or suppliers to discuss the specific requirements of the track or linear motion application. By collaborating with experts, it is possible to customize or modify track bearings to optimize performance, reliability, and longevity in a wide range of applications.

track bearing

Can track bearings withstand harsh environments or exposure to contaminants?

Track bearings are designed to operate in a wide range of environments, including harsh conditions and exposure to contaminants. However, the ability of track bearings to withstand such environments depends on their specific design, materials, and protective measures. Here’s a detailed explanation:

Many track bearings are engineered with features that enhance their resistance to harsh environments and contaminants. These features may include:

  • Sealing and Shielding: Some track bearings are equipped with seals or shields that provide a physical barrier against contaminants such as dirt, dust, water, and debris. These seals or shields help prevent the entry of contaminants into the bearing’s internal components, reducing the risk of damage and premature wear.
  • Corrosion Resistance: Track bearings intended for use in corrosive environments are often constructed from materials that offer high corrosion resistance. Stainless steel, for example, is commonly used due to its ability to withstand exposure to moisture, chemicals, and other corrosive substances.
  • Specialized Coatings: Some track bearings may feature specialized coatings or surface treatments that provide additional protection against contaminants and harsh conditions. These coatings can enhance the bearing’s resistance to corrosion, abrasion, and chemical exposure.
  • High-Temperature Capability: Certain track bearings are designed to withstand high-temperature environments. They are typically constructed using heat-resistant materials and lubricants that can maintain their structural integrity and performance even under extreme heat.
  • Environmental Sealing: In applications where track bearings are exposed to extreme conditions, such as underwater or in highly dusty environments, special environmental sealing measures may be employed. These measures can include the use of advanced sealing technologies or the encapsulation of the bearings within protective housings.

While track bearings are designed to withstand harsh environments and exposure to contaminants, it is important to note that their performance and longevity can still be affected over time. Regular maintenance, including cleaning, inspection, and lubrication, is crucial to ensure proper functioning and to mitigate the impact of contaminants on the bearings.

It is recommended to consult the manufacturer’s specifications and guidelines for the track bearings being used in a specific application. Manufacturers often provide information on the environmental ratings and limits of their bearings, helping users determine the suitability of the bearings for particular harsh environments or exposure to contaminants.

By selecting track bearings with appropriate features, materials, and protection, and by implementing proper maintenance practices, it is possible to enhance the bearings’ ability to withstand harsh environments and exposure to contaminants, thereby maximizing their performance and longevity.

track bearing

How do track bearings compare to other types of bearings like ball bearings or roller bearings?

Track bearings, ball bearings, and roller bearings are all types of rolling bearings used in various applications. Let’s compare track bearings to ball bearings and roller bearings to understand their similarities and differences:

  • Design and Construction: Track bearings, ball bearings, and roller bearings have different designs and constructions. Track bearings, also known as track rollers or track follower bearings, are designed specifically for guided linear or rotational motion along a track or guide rail. They feature an outer ring with a track surface, an inner ring, rolling elements (such as rollers or needles), and a cage. Ball bearings, on the other hand, have spherical rolling elements (balls) sandwiched between inner and outer rings. Roller bearings, as the name suggests, have cylindrical or tapered rolling elements (rollers) between inner and outer rings.
  • Motion and Load Handling: Track bearings are primarily used for guided motion in track-based systems, while ball bearings and roller bearings are used for general rotational or linear motion. Track bearings are designed to support both radial and axial loads and provide smooth and controlled motion along the track. Ball bearings and roller bearings are also capable of supporting radial and axial loads but are typically used in applications where the motion is not constrained to a specific track or guide rail. Roller bearings, with their larger contact area and higher load-carrying capacity, are often preferred for applications with higher loads.
  • Applications: Track bearings are commonly used in applications such as material handling systems, conveyors, cam mechanisms, automated machinery, construction equipment, and agricultural machinery, where guided motion along a track or rail is required. Ball bearings and roller bearings find applications in a wide range of industries and systems, including electric motors, pumps, automotive applications, industrial machinery, and appliances.
  • Friction and Efficiency: Track bearings, ball bearings, and roller bearings all aim to minimize friction and ensure efficient operation. However, due to their different designs and contact surfaces, they exhibit varying levels of friction. Ball bearings typically have lower friction due to point contact between the balls and the raceways. Roller bearings, especially tapered roller bearings, distribute the load over a larger contact area, resulting in slightly higher friction compared to ball bearings. Track bearings, with their track interface, may have slightly higher friction compared to ball bearings or roller bearings due to the rolling elements’ contact with the track surface.
  • Installation and Maintenance: Track bearings, ball bearings, and roller bearings require proper installation and maintenance for optimal performance and longevity. However, track bearings may require additional attention during installation as they need to be properly aligned with the track or guide rail. Regular lubrication and periodic inspection are essential for all types of bearings to ensure smooth operation and prevent premature failure.

In summary, track bearings, ball bearings, and roller bearings have distinct designs and applications. Track bearings are specialized for guided motion along a track or rail, while ball bearings and roller bearings are more versatile and used in a wide range of rotational or linear motion applications. Each type of bearing has its advantages and considerations in terms of load handling, friction, efficiency, and installation requirements. Selecting the appropriate bearing type depends on the specific application requirements, load conditions, motion characteristics, and environmental factors.

China manufacturer PMI MSA30S Linear Guide Rail Heavy Duty Track Rollers Bearings and Carriage   deep groove ball bearingChina manufacturer PMI MSA30S Linear Guide Rail Heavy Duty Track Rollers Bearings and Carriage   deep groove ball bearing
editor by CX 2024-05-14

China Good quality Agricultural Bearingauto Bearing Groove Type Idler Pulley Track Roller Ball Bearing for Embroidery Machine Guide Rail Agricultural Bearing supplier

Product Description

 

Product Description

 

100% real shooting of all pro Our store has joined the buyer
Guaranteed transaction Purchase more assured

 

Product application

Certifications

 

Packaging & Shipping

 

 

FAQ

 

Q:What’s your after-sales service and warranty?
A: We promise to bear the following responsibility when defective product is found:
1.12 months warranty from the first day of receiving goods;
2. Replacements would be sent with goods of your next order;
3. Refund for defective products if customers require.
Q:Do you accept ODM&OEM orders?
A: Yes, we provide ODM&OEM services to worldwide customers, we are CZPT to customize housings in different styles, and sizes in different brands, we also customize circuit board & packaging box as per your requirements.
Q:What’s the MOQ?
A: MOQ is 10pcs for standardized products; for customized products, MOQ should be negotiated in advance. There is no MOQ for sample orders.
Q:Do you offer free samples?
A: Yes we offer free samples to distributors and wholesalers

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rotations: Smoothy
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Radial Bearing
Material: Bearing Steel
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

track bearing

Can you explain the maintenance and lubrication requirements for track bearings?

Maintenance and lubrication are essential aspects of ensuring the optimal performance and longevity of track bearings. Proper maintenance practices and appropriate lubrication help minimize wear, reduce friction, prevent corrosion, and extend the service life of the bearings. Here’s an explanation of the maintenance and lubrication requirements for track bearings:

Maintenance Requirements:

  • Cleanliness: It is crucial to maintain a clean operating environment for track bearings. Regularly remove dirt, dust, and debris from the track and bearing surfaces to prevent contamination, which can lead to premature wear and damage.
  • Inspection: Periodically inspect the track bearings for signs of wear, damage, or misalignment. Check for excessive play, noise, or roughness during operation. If any issues are detected, take appropriate measures such as bearing replacement or realignment to ensure optimal performance.
  • Tightening and Fasteners: Check the tightness of fasteners, such as bolts or screws, that secure the track bearings. Loose fasteners can lead to misalignment or instability. Ensure that all fasteners are properly tightened according to the manufacturer’s specifications.
  • Track Alignment: Proper track alignment is crucial for smooth and efficient operation of track bearings. Regularly check the alignment of the track or guide rails and make necessary adjustments to maintain proper alignment, minimizing excessive loads and wear on the bearings.
  • Load Limits: Adhere to the specified load limits for the track bearings. Exceeding the recommended load capacity can cause premature wear and failure. Consider the dynamic and static load ratings of the bearings to ensure they are not subjected to excessive loads that can compromise their performance.

Lubrication Requirements:

  • Proper Lubricant Selection: Select the appropriate lubricant based on the operating conditions, such as temperature, load, and speed. Consult the manufacturer’s recommendations or seek expert advice to ensure the lubricant’s compatibility with the track bearings and the specific application.
  • Regular Lubrication: Follow a regular lubrication schedule as recommended by the manufacturer. This may involve applying lubricant at specified intervals or based on the operating hours. Adequate lubrication helps minimize friction, reduce wear, and maintain proper functioning of the track bearings.
  • Correct Lubrication Method: Apply the lubricant using the appropriate method, whether it’s manual greasing, automatic lubrication systems, or specialized lubrication techniques. Ensure that the lubricant reaches all necessary contact points and provides sufficient coverage to the bearing surfaces.
  • Monitoring and Replenishment: Monitor the lubricant levels regularly and replenish as needed. In some cases, track bearings may have built-in lubrication systems that require periodic refilling or maintenance. Keep track of the lubricant condition and replace it when it becomes contaminated or degraded.
  • Environmental Considerations: Consider the operating environment when selecting the lubricant. Extreme temperatures, exposure to moisture, or the presence of chemicals or contaminants may require special lubricants that can withstand these conditions and provide effective protection and lubrication.

It is important to consult the manufacturer’s guidelines and recommendations specific to the track bearings being used. Following the recommended maintenance and lubrication practices ensures optimal performance, reduces the risk of premature failure, and maximizes the overall lifespan of the track bearings.

track bearing

How do track bearings enhance the overall efficiency and functionality of linear motion systems?

Track bearings play a crucial role in enhancing the overall efficiency and functionality of linear motion systems. They offer several benefits that contribute to improved performance, increased reliability, and enhanced functionality. Here’s a detailed explanation:

  • Reduced Friction: Track bearings are designed to minimize friction between moving components, allowing for smoother and more efficient linear motion. By reducing friction, they help to optimize the efficiency of the system, reducing energy consumption and minimizing wear on the components.
  • Precision and Stability: Track bearings provide precise guidance and stability to the linear motion system. They ensure accurate and repeatable motion along the intended path, allowing for precise positioning and control. This is particularly important in applications that require high accuracy, such as CNC machines, robotics, and automated assembly lines.
  • Load Distribution: Track bearings distribute the load evenly along their length, allowing for efficient load transfer and reducing the concentration of forces on specific components. This helps to prevent excessive wear, deformation, and premature failure of the system, improving overall reliability and longevity.
  • Handling Heavy Loads: Track bearings are specifically designed to handle heavy loads in linear motion systems. They offer high load capacities and robust construction, enabling them to support and move heavy objects with ease. This capability is essential in industries such as material handling, construction, and transportation.
  • Smooth and Quiet Operation: Track bearings are engineered to provide smooth and quiet operation, minimizing noise and vibrations in the linear motion system. This is especially important in applications where noise reduction and comfort are critical, such as in medical equipment, office automation, and consumer electronics.
  • Versatility and Adaptability: Track bearings come in various designs, sizes, and configurations to accommodate different linear motion system requirements. They can be easily integrated into existing systems or customized to fit specific applications. This versatility allows for greater flexibility and adaptability in designing and implementing linear motion solutions.
  • Maintenance and Serviceability: Track bearings are designed for ease of maintenance and serviceability. They often feature removable components, such as seals or shields, that allow for inspection, cleaning, and lubrication. This simplifies maintenance tasks and reduces downtime, contributing to improved overall system efficiency and uptime.

By incorporating track bearings into linear motion systems, industries can benefit from increased efficiency, improved performance, and enhanced functionality. Whether it’s achieving precise positioning, handling heavy loads, reducing friction, or ensuring smooth operation, track bearings play a vital role in optimizing the overall efficiency and functionality of linear motion systems.

track bearing

What are track bearings, and how are they used in various applications?

Track bearings, also known as track rollers or track follower bearings, are specialized rolling bearings designed to operate in track-based systems. They are used in various applications that require guided linear or rotational motion. Let’s explore in detail the characteristics of track bearings and their common applications:

  • Design and Construction: Track bearings typically consist of an outer ring, an inner ring, a set of rolling elements (such as rollers or needles), and a cage that holds the rolling elements together. The outer ring features a track or guide surface, while the inner ring is mounted on a shaft or stud. The rolling elements facilitate smooth rolling motion along the track, allowing for linear or rotational movement.
  • Guided Motion: Track bearings are primarily used to provide guided motion in applications where components need to move along a defined path or track. The outer ring’s track surface interfaces with the track or guide rail, ensuring precise and controlled motion. This guided motion is crucial in various applications such as material handling systems, conveyors, cam mechanisms, and automated machinery.
  • Load Support: Track bearings are designed to support and distribute loads, both radial and axial, in track-based systems. They can handle substantial loads while maintaining smooth motion and minimizing friction. The load-carrying capacity of track bearings makes them suitable for applications involving heavy loads, such as construction equipment, agricultural machinery, and industrial automation systems.
  • Multiple Types: Track bearings come in various types to suit different application requirements. Some common types include yoke type track rollers, stud type track rollers, and cam followers. Yoke type track rollers have thick outer rings and can withstand high radial loads. Stud type track rollers have a stud instead of an inner ring and are suitable for applications with limited space. Cam followers have a stud with a built-in roller and are commonly used in cam-driven systems.
  • Sealing and Contamination Protection: In many applications, track bearings are exposed to harsh environments and contaminants. To ensure reliable operation, track bearings often incorporate sealing arrangements or protective coatings. These features help prevent the ingress of dust, dirt, moisture, or other contaminants, prolonging the bearing’s service life and reducing the risk of premature failure.
  • Various Applications: Track bearings find applications in a wide range of industries and systems. Some common applications include:
    • Material Handling Systems: Track bearings are used in conveyors, roller tracks, and overhead cranes to facilitate smooth and guided movement of materials.
    • Automated Machinery: Track bearings are employed in automated machines and robotic systems for precise motion control and positioning.
    • Cam Mechanisms: Track bearings are utilized in cam-driven systems, where they follow the profile of the cam and translate the rotary motion into linear or oscillating motion.
    • Construction Equipment: Track bearings are found in construction machinery, such as excavators, bulldozers, and compactors, to support the tracks or guide wheels.
    • Agricultural Machinery: Track bearings are used in agricultural equipment, including tractors, combines, and harvesters, to support the tracks or guide wheels and provide reliable movement.
    • Printing and Packaging Machinery: Track bearings are employed in printing presses, packaging machines, and labeling systems to ensure precise and guided movement of the printing heads, packaging materials, or labels.

In summary, track bearings are specialized rolling bearings designed for guided linear or rotational motion along a track or guide rail. They provide precise motion control, support substantial loads, and find applications in various industries such as material handling, automation, construction, agriculture, printing, and packaging. With their ability to facilitate guided motion and handle significant loads, track bearings contribute to the smooth and reliable operation of track-based systems in a wide range of applications.

China Good quality Agricultural Bearingauto Bearing Groove Type Idler Pulley Track Roller Ball Bearing for Embroidery Machine Guide Rail Agricultural Bearing   supplierChina Good quality Agricultural Bearingauto Bearing Groove Type Idler Pulley Track Roller Ball Bearing for Embroidery Machine Guide Rail Agricultural Bearing   supplier
editor by CX 2024-04-29

China Best Sales Nutr40 Yoke Track Roller Bearing for Guide Rail bearing and race

Product Description

NUTR40 yoke track roller bearing for CZPT rail

Product Description

1) Metric size and inch size 
2) Large range 
3) Good quality and comptitive price

Cam follower/Track rollers

1) Metric series and inch series:

Matric series:   STO, RSTO, NA22…2RS, RNA22…2RS, NATR,NATR…PP,NATV,NATV…PP, NUTR, ETC, KR, KRE, KR…PP, KRE…PP, KRV, KRV…PP, KRVE…PP, NUKR, ETC

Inch series:  CRY…V, CRY…VUU, ETC, CR, CRH
2) Large range : 
3) Good quality and comptitive price

Manufacturers abroad

 

 

IKO

 

Mc.GILL

NSK

 

With cage

 

Cylindrical Roller Dia.

 

UNSEALED

NART

NATR..X

MCYRR..X

FY, CJ

 

SEALED

NART..UU

NATR..PPX

MCYRR..SX

FYCJS

Crowned Roller Dia.

 

UNSEALED

NART..R

NATR

MCYRR

FYCJ..R

 

SEALED

NART..UUR

NATR..PP

MCYRR..S

FYCJS..R

 

 

           

 

Our factory

HangZhou CZPT (D&M) Bearings Co., Ltd. is a leading manufacturer of ball & roller bearings and exporter of belts, chains and auto parts in China. We specialize in research and development of various kinds of high precision, non-noise, long-life bearings, high quality chains, belts, auto parts and other machinery & transmission products.   

Product Parameters

Brand : BMT; Luman; OEM Bearing Size : GB/T 276-2013
Bearing Material : Bearing Steel Inner Diameter : 3 – 120 mm
Rolling : Steel balls Outer Diameter : 8 – 220 mm
Cage : Steel; Nylon Width Diameter : 4 – 70 mm
Oil/Grease : Chevron CZPT etc… Clearance : C2; C0; C3; C4
ZZ bearing : White , Yellow etc… Precision : ABEC-1;ABEC-3; ABEC-5
RS bearing : Black , Red,brown etc… Noise Level : Z1/Z2/Z3/Z4
Open bearing : No cover Vibration Level : V1/V2/V3/V4

About us
HangZhou CZPT (D&M) Bearings Co., Ltd. was established in 2005 and  one of leading ball & roller bearing manufacturers & belt, chain, auto-parts exporters in China. It is specialized in research and development for various kinds of high precision, non-noise, long-life bearings, high quality chains, belts, auto-parts and other machinery&transmission products. At present, CZPT has more than 500 employees and produces 50 million sets of bearings annually. Due to our many years of experience and our own manufacturing in HangZhou china bearing town,DEMY has already served thousands of customers around the world.we participate in major professional exhibitions at home and abroad every year.

Good quality control and competitive prices
Each goods is processed by our internal quality management (ISO 9001:2000) with the corresponding testing, such as noise testing, checks of grease application, sealing checks, hardness degree of the steel as well as measurements.

Adherence to delivery dates, flexibility and reliability have had strong foundations in the corporate philosophy for years now.

DEMY is good at offering customer-specific quality at attractive and competitive prices.

Why  Choose  US ?
1.History : DEMY(D&M)BEARING CO., LTD is located in Hemudu Culture Ruins of HangZhou China which has 7000-year-old history. It is specialized in research and development for various kinds of high precision, non-noise, long-life bearings, high quality chains, belts, auto-parts and other machinery&transmission products.

2.Enterprise Scale: The company has manufacturing space of more than 30,000 square meters and has 20 sets of automatic gringding production lines, automatic assembly lines with the annual production capacity of 25 millions sets.

3.Export experience: Our company is 1 of the biggest bearing manufacturers and exporters in china. Our products are sold all over the world, include Europe, North America, the Middle East, Southeast Asia and South America etc.

4.Brand: We have 2 independent brands : CZPT ; Luman bearing.OEM also is accepted.

5.Quality ControlEach goods is processed by our internal quality management (ISO 9001:2000) with the corresponding testing, such as noise testing, checks of grease application, sealing checks, hardness degree of the steel as well as measurements.Adherence to delivery dates, flexibility and reliability have had strong foundations in the corporate philosophy for years now.

6.Service: High quality, good credit and excellent service are the tenet of our company. Customers’satisfaction is our lifeline, as well as our highest honor. We will do our best to meet your requirements, and will do better in the future.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Double
Outer Dimension: 80mm
Material: Bearing Steel
Spherical: Non-Aligning Bearings
Load Direction: Radial Bearing
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

track bearing

Can track bearings be customized or modified for specific track or linear motion applications?

Yes, track bearings can be customized or modified to meet specific requirements of track or linear motion applications. Manufacturers often offer a range of options and capabilities to tailor track bearings to the unique needs of different industries and applications. Here are some ways in which track bearings can be customized or modified:

  • Size and Dimensional Variations: Track bearings can be customized in terms of size, diameter, width, and overall dimensions to fit specific track or linear motion systems. Manufacturers can provide bearings with varying sizes and load capacities to accommodate different application requirements.
  • Material Selection: Track bearings can be manufactured from various materials depending on the specific application’s demands. Common materials include steel, stainless steel, ceramic, and polymer composites. Material selection can be customized to achieve desired properties such as corrosion resistance, high temperature tolerance, or low friction.
  • Sealing and Protection: In applications where track bearings are exposed to contaminants, moisture, or harsh environments, customized sealing and protection features can be added. These may include additional seals, shields, or coatings to enhance the bearing’s resistance to dust, water, chemicals, or extreme temperatures.
  • Lubrication Options: While self-lubricating or maintenance-free track bearings offer convenience, applications with specific lubrication requirements may benefit from customized lubrication options. Manufacturers can modify the bearing design to accommodate external lubrication systems or provide alternative lubrication methods to meet the unique demands of the application.
  • Specialized Load and Speed Ratings: In certain applications, track bearings may need to handle exceptionally high loads or operate at high speeds. Manufacturers can customize the bearing design to offer specialized load and speed ratings to ensure optimal performance and reliability in such demanding conditions.
  • Mounting and Attachment Options: Track bearings can be customized with different mounting and attachment options to facilitate easy installation and integration into specific track or linear motion systems. This may include variations in bolt hole patterns, flange designs, or specialized mounting arrangements.
  • Track Geometry Compatibility: Track bearings can be designed or modified to match specific track or guide rail geometries. This ensures proper fit, alignment, and smooth operation along the designated track, minimizing the risk of misalignment or issues related to track compatibility.

It is important to work closely with bearing manufacturers or suppliers to discuss the specific requirements of the track or linear motion application. By collaborating with experts, it is possible to customize or modify track bearings to optimize performance, reliability, and longevity in a wide range of applications.

track bearing

How do track bearings contribute to the precision, accuracy, and reliability of motion control systems?

Track bearings play a crucial role in enhancing the precision, accuracy, and reliability of motion control systems. They provide several key contributions that ensure smooth and consistent linear motion. Here’s a detailed explanation:

  • Precision Guidance: Track bearings offer precise guidance for linear motion systems. They are designed with close tolerances and accurate geometries, allowing for accurate positioning and control of the moving components. This precision guidance ensures that the desired motion is achieved with minimal deviation or error.
  • Smooth and Consistent Motion: By minimizing friction and providing smooth rolling or sliding surfaces, track bearings enable smooth and consistent motion in motion control systems. They reduce the effects of irregularities, misalignments, or vibrations, resulting in smoother operation and improved accuracy.
  • Repeatable Performance: Track bearings provide repeatable performance in motion control systems. They offer consistent and predictable motion characteristics, allowing for precise and repeatable positioning of the moving components. This repeatability is essential in applications that require high accuracy and consistency, such as CNC machining, semiconductor manufacturing, and precision measurement systems.
  • Load Distribution: Track bearings distribute the load evenly along their length, helping to minimize stress concentrations on specific components. This even load distribution improves the overall stability and reliability of the motion control system. It reduces the risk of component failure, deformation, or excessive wear, contributing to enhanced system reliability.
  • Minimized Play and Backlash: Track bearings are designed to minimize play and backlash, which are undesirable movements or clearances between components. Play and backlash can introduce inaccuracies and reduce the precision of motion control systems. Track bearings with tight tolerances and optimized designs help minimize these undesirable effects, ensuring precise and accurate motion.
  • Stiffness and Rigidity: Track bearings provide stiffness and rigidity to the motion control system. They resist deflection and maintain their shape under load, minimizing any unwanted flexing or bending. This stiffness enhances the overall stability and precision of the system, allowing for precise control and accurate motion even under varying loads or external forces.
  • Resistance to Contamination: Track bearings are often equipped with seals or shields to protect against contaminants such as dirt, dust, or liquids. This protection helps maintain the precision and reliability of the motion control system by preventing the ingress of particles that could interfere with the smooth operation of the bearings or cause premature wear and failure.

By incorporating track bearings into motion control systems, industries can benefit from improved precision, accuracy, and reliability. Whether it’s achieving precise positioning, ensuring consistent and repeatable motion, minimizing play and backlash, or providing reliable load distribution, track bearings contribute to the overall performance and integrity of motion control systems.

track bearing

What are track bearings, and how are they used in various applications?

Track bearings, also known as track rollers or track follower bearings, are specialized rolling bearings designed to operate in track-based systems. They are used in various applications that require guided linear or rotational motion. Let’s explore in detail the characteristics of track bearings and their common applications:

  • Design and Construction: Track bearings typically consist of an outer ring, an inner ring, a set of rolling elements (such as rollers or needles), and a cage that holds the rolling elements together. The outer ring features a track or guide surface, while the inner ring is mounted on a shaft or stud. The rolling elements facilitate smooth rolling motion along the track, allowing for linear or rotational movement.
  • Guided Motion: Track bearings are primarily used to provide guided motion in applications where components need to move along a defined path or track. The outer ring’s track surface interfaces with the track or guide rail, ensuring precise and controlled motion. This guided motion is crucial in various applications such as material handling systems, conveyors, cam mechanisms, and automated machinery.
  • Load Support: Track bearings are designed to support and distribute loads, both radial and axial, in track-based systems. They can handle substantial loads while maintaining smooth motion and minimizing friction. The load-carrying capacity of track bearings makes them suitable for applications involving heavy loads, such as construction equipment, agricultural machinery, and industrial automation systems.
  • Multiple Types: Track bearings come in various types to suit different application requirements. Some common types include yoke type track rollers, stud type track rollers, and cam followers. Yoke type track rollers have thick outer rings and can withstand high radial loads. Stud type track rollers have a stud instead of an inner ring and are suitable for applications with limited space. Cam followers have a stud with a built-in roller and are commonly used in cam-driven systems.
  • Sealing and Contamination Protection: In many applications, track bearings are exposed to harsh environments and contaminants. To ensure reliable operation, track bearings often incorporate sealing arrangements or protective coatings. These features help prevent the ingress of dust, dirt, moisture, or other contaminants, prolonging the bearing’s service life and reducing the risk of premature failure.
  • Various Applications: Track bearings find applications in a wide range of industries and systems. Some common applications include:
    • Material Handling Systems: Track bearings are used in conveyors, roller tracks, and overhead cranes to facilitate smooth and guided movement of materials.
    • Automated Machinery: Track bearings are employed in automated machines and robotic systems for precise motion control and positioning.
    • Cam Mechanisms: Track bearings are utilized in cam-driven systems, where they follow the profile of the cam and translate the rotary motion into linear or oscillating motion.
    • Construction Equipment: Track bearings are found in construction machinery, such as excavators, bulldozers, and compactors, to support the tracks or guide wheels.
    • Agricultural Machinery: Track bearings are used in agricultural equipment, including tractors, combines, and harvesters, to support the tracks or guide wheels and provide reliable movement.
    • Printing and Packaging Machinery: Track bearings are employed in printing presses, packaging machines, and labeling systems to ensure precise and guided movement of the printing heads, packaging materials, or labels.

In summary, track bearings are specialized rolling bearings designed for guided linear or rotational motion along a track or guide rail. They provide precise motion control, support substantial loads, and find applications in various industries such as material handling, automation, construction, agriculture, printing, and packaging. With their ability to facilitate guided motion and handle significant loads, track bearings contribute to the smooth and reliable operation of track-based systems in a wide range of applications.

China Best Sales Nutr40 Yoke Track Roller Bearing for Guide Rail   bearing and raceChina Best Sales Nutr40 Yoke Track Roller Bearing for Guide Rail   bearing and race
editor by CX 2024-04-25

China Professional 12*54*25 V10 Rail Linear Bearing Guide Rollers, Double Row Guide Rail Track Roller V Groove Bearing with Good quality

Product Description

12*54*25   V10 Rail Linear Bearing Xihu (West Lake) Dis. Rollers, Double Row Xihu (West Lake) Dis. Rail Track Roller V Groove Bearing

Introduction

This bearing is custom-designed for bearing steel, dimensional accuracy are very good, suitable for high-precision, high-speed, high-load components.
This roller mainly used for wire cutting molybdenum wire and other wire CZPT wheel CZPT wheel assembly. Please confirm the purchase.

Different shapes of materials are suitable for the straightening wheel groove type, the linear type is suitable for V groove, the bar material is suitable for U groove, and the rectangular flat material is suitable for H groove.

We offer customed service according to your drawing.

Customizable, please contact customer service!!!

Model description

Model description
12*54*25   V10   represents inner diameter 12mm* outer diameter 52mm* height 25mm,  V10 represents V groove, groove width 10mm, groove depth 10mm

Other Mordels 

Inner diameter outer diameter height Groove Inner diameter*outer diameter*height(mm) Type
3 10 3 U/V/H 3*10*3  
3 12 4 U/V/H 3*12*4  
4 10 4 U/V/H 4*10*4  
4 11 4 U/V/H 4*11*4  
4 12 4 U/V/H 4*12*4  
4 13 4 U/V/H 4*13*4  
4 13 5 U/V/H 4*13*5 624Z
4 13 6 U/V/H 4*13*6  
4 13 7 U/V/H 4*13*7  
4 18 7 U/V/H 4*18*7 V1804RS
6 12 4 U/V/H 6*12*4  
6 13 5 U/V/H 6*13*5  
6 15 6 U/V/H 6*15*6  
6 17 6 U/V/H 6*17*6  
6 19 6 U/V/H 6*19*6  
6 19 9 U/V/H 6*19*9  
6 20 6 U/V/H 6*20*6  
6 20 9 U/V/H 6*20*9  
6 20 10 U/V/H 6*20*10  
6 21 6 U/V/H 6*21*6  
6 22 7 U/V/H 6*22*7  
6 22 11 U/V/H 6*22*11  
6 24 11 U/V/H 6*24*11 SG20
6 27 6 U/V/H 6*27*6  
6 27 8 U/V/H 6*27*8  
6 28 7 U/V/H 6*28*7  
8 22 7 U/V/H 8*22*7 608Z
8 24 8 U/V/H 8*24*8  
8 24 11 U/V/H 8*24*11  
8 26 7 U/V/H 8*26*7  
8 28 9 U/V/H 8*28*9  
8 37 11 U/V/H 8*37*11  
8 40 12 14 U/V/H 8*40*12/14 SG20
10 27 14 U/V/H 10*27*14  
10 30 8 U/V/H 10*30*8  
10 30 9 U/V/H 10*30*9 6200Z
10 30 13 U/V/H 10*30*13  
10 32 9 U/V/H 10*32*9 6202Z
10 32 14 U/V/H 10*32*14 629 2RS
10 35 9 U/V/H 10*35*9 SG20
10 35 11 U/V/H 10*35*11  
10 37 12 U/V/H 10*37*12  
10 40 14 U/V/H 10*40*14  
10 46 16 U/V/H 10*46*16  
12 32 10 U/V/H 12*32*10  
12 37 12 U/V/H 12*37*12  
12 42 19 U/V/H 12*42*19 629 2RS
12 45 24 U/V/H 12*45*24  
12 54 25 U/V/H 12*54*25 629 2RS
12 50 13 U/V/H 12*50*13  
15 47 11 U/V/H 15*47*11 6202Z

 

Company Profile

 

Who are we?

Q1:  Are you a factory or trading company?
 We are a factory . We can promise you a short lead time and best price if you purchase our machine.  We also have our own trading department.
Q2:  How does the factory ensure products quality?
With Nearly 16 years experience in manufacturing winding machine, we have our own technology develop department and testing department.
Quality is the first priority. We have strict purchasing system to ensure the quality of spare parts. We have experienced workers to assemble and test machine. 
Q3:How about your after-sale service?
We have a professional technology supporting team for your timely services. You can get the help you need in time by telephone, webcam, online chat (Google talk, Facebook, Skype).  Please contact us once the machine has any problem. Best service will be offered.
Q4 What are your payment terms?
 100%TT or prepaid 50% ,  balance 50% before shipping.
Q5 How can I get my order? How can I know you sent the goods?
We will send the goods by UPS, DHL, FedEx or sea shipment.  After we sent the goods, we will give you the tracking number or other relative files for checking.
 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
Outer Dimension: Small and Medium-Sized (60-115mm)
Material: Bearing Steel
Spherical: Aligning Bearings
Load Direction: Axial Bearing
Separated: Unseparated
Customization:
Available

|

Customized Request

track bearing

What are the considerations for selecting the right track bearings for a particular application?

Selecting the right track bearings for a particular application requires careful consideration of various factors to ensure optimal performance, reliability, and longevity. Here are the key considerations to keep in mind:

  • Load Requirements: Assess the expected load conditions in the application. Consider both the static and dynamic loads that the track bearings will need to support. Determine the maximum load capacity required to ensure that the selected bearings can handle the anticipated loads without premature failure or excessive wear.
  • Speed and Acceleration: Evaluate the speed and acceleration requirements of the application. Higher speeds and rapid accelerations can impose additional stresses on the track bearings. Choose bearings with suitable speed and acceleration ratings to ensure they can operate effectively within the desired range without compromising performance or causing premature wear.
  • Environmental Factors: Consider the operating environment of the application. Evaluate factors such as temperature extremes, moisture, dust, chemicals, and potential exposure to corrosive substances. Select track bearings that are designed to withstand the specific environmental conditions to ensure optimal performance and longevity.
  • Track and Rail Compatibility: Assess the compatibility of the track bearings with the existing track or rail system. Consider factors such as track geometry, dimensional requirements, and mounting options. Ensure that the selected bearings are suitable for the specific track or rail design to facilitate proper installation, alignment, and smooth operation.
  • Maintenance and Lubrication: Evaluate the maintenance and lubrication requirements of the track bearings. Consider factors such as the need for regular maintenance, lubrication intervals, and the availability of suitable lubricants. Choose bearings that align with the desired maintenance practices and provide appropriate lubrication options based on the application’s operational demands.
  • Expected Lifespan and Reliability: Determine the desired lifespan and reliability expectations for the track bearings. Consider factors such as the projected operating hours, duty cycles, and the criticality of the application. Select bearings from reputable manufacturers known for producing high-quality, reliable products that align with the expected lifespan and reliability requirements.
  • Cost Considerations: Evaluate the cost-effectiveness of the track bearings. Consider the initial purchase cost as well as the long-term costs associated with maintenance, replacement, and potential downtime. Strive for a balance between the upfront investment and the overall value provided by the bearings in terms of performance, reliability, and longevity.

It is essential to consult with bearing manufacturers or industry experts who can provide guidance and recommendations based on the specific application requirements. By considering these factors and seeking expert advice, you can select the right track bearings that best meet the needs of your particular application.

track bearing

Can track bearings be used in both light-duty and heavy-duty machinery applications?

Yes, track bearings can be used in both light-duty and heavy-duty machinery applications. They are versatile components that offer reliable support for linear motion in a wide range of industrial settings. Here’s a detailed explanation:

1. Light-Duty Machinery Applications:

In light-duty machinery applications, track bearings provide cost-effective and efficient solutions for various tasks. Light-duty track bearings are designed to handle lower loads and are commonly used in applications such as:

  • Office automation equipment
  • Consumer electronics
  • Printing machinery
  • Small conveyors and material handling systems
  • Automated vending machines
  • Textile machinery

These applications typically involve lighter loads and lower operating speeds, making light-duty track bearings suitable for providing smooth and reliable linear motion.

2. Heavy-Duty Machinery Applications:

Track bearings are also widely used in heavy-duty machinery applications that require robust components capable of handling substantial loads and challenging operating conditions. Heavy-duty track bearings are designed to withstand higher loads and offer increased durability. They are commonly employed in applications such as:

  • Material handling equipment
  • Construction machinery
  • Mining equipment
  • Transportation systems
  • Industrial automation
  • Large-scale conveyors
  • Steel mills

These applications often involve heavy loads, high operating speeds, and demanding environments. Track bearings in heavy-duty machinery applications are engineered to provide reliable performance, extended service life, and resistance to factors such as contamination, shock, and vibration.

Track bearings are available in various sizes, designs, and load capacities, allowing them to be tailored to the specific requirements of both light-duty and heavy-duty machinery applications. Manufacturers offer a range of options to accommodate different load capacities, operating conditions, and performance specifications.

It is important to consider the specific requirements and operating conditions of the machinery application when selecting track bearings. Consulting with bearing manufacturers or industry experts can help ensure the appropriate track bearings are chosen for optimal performance and reliability in both light-duty and heavy-duty machinery applications.

track bearing

What are the components of a track bearing assembly and their functions?

A track bearing assembly consists of several components that work together to facilitate smooth and controlled motion along a track or guide rail. Let’s explore the components of a typical track bearing assembly and their functions:

  • Outer Ring: The outer ring is the outermost component of a track bearing assembly. It provides structural support and houses the rolling elements. The outer ring is designed with a track or guide surface that interfaces with the track or rail, allowing the bearing to move along the desired path.
  • Inner Ring: The inner ring is located inside the outer ring and provides a mounting surface for the bearing assembly. It may have a stud or shaft for attaching the bearing to the application. The inner ring helps in aligning and positioning the bearing assembly.
  • Rolling Elements: The rolling elements are the components that enable smooth rolling motion between the inner and outer rings. In track bearings, the rolling elements are typically in the form of rollers or needles. They are designed to minimize friction and distribute the load evenly along the track surface.
  • Cage: The cage, also known as a retainer, is a component that holds the rolling elements in position and maintains proper spacing between them. The cage prevents the rolling elements from contacting each other, reducing friction and wear. It also helps in guiding the rolling elements during operation.
  • Seals or Shields: Track bearings often incorporate seals or shields to protect the internal components from contaminants such as dirt, dust, and moisture. Seals provide a physical barrier between the bearing and the external environment, while shields offer partial protection while allowing some lubrication to reach the rolling elements.
  • Lubrication: Proper lubrication is crucial for the smooth operation and longevity of track bearings. Lubrication reduces friction, dissipates heat, and prevents wear between the rolling elements and raceways. Lubricants can be applied through grease fittings or oil ports, ensuring that the rolling elements roll smoothly along the track surface.
  • Mounting Hardware: Depending on the specific design and application requirements, track bearing assemblies may include mounting hardware such as studs, bolts, or fasteners. These components are used to securely attach the bearing assembly to the application, ensuring proper alignment and stability.

By combining these components, a track bearing assembly provides reliable and controlled motion along a track or guide rail. The outer and inner rings, along with the rolling elements and cage, enable smooth rolling motion, while seals or shields protect the internal components from contaminants. Proper lubrication and mounting hardware ensure optimal performance and longevity of the track bearing assembly.

China Professional 12*54*25 V10 Rail Linear Bearing Guide Rollers, Double Row Guide Rail Track Roller V Groove Bearing   with Good qualityChina Professional 12*54*25 V10 Rail Linear Bearing Guide Rollers, Double Row Guide Rail Track Roller V Groove Bearing   with Good quality
editor by CX 2024-04-17

China factory Precision V Grooved Track Wheel Bearings for CNC Guide Rail LV202-40zz LV202-40 2RS V Track Roller Bearings bearing air

Product Description

Product Description

Track Roller with “V” groove Profile – LV Series
Series LV bearings can be widely used in the cylindrical track or ” V ” profile track with an angle of 120 degrees. Different from the series LFR bearings, series LV bearings are more adaptable to the different track sizes. Each type can be applied with a larger range of track diameters. They are widely used for the heavy-duty track, mobile equipment, wire straightening machine and so on.

Bearings take the internal structure design of double row angular contact ball bearings and have a thick-walled outer ring, so the bearings can accommodate higher loads. Bearings are made of the high-quality chrome steel, processed by heat treatment and precision grind, and are filled with a long service life, high-grade and multi-purposes grease. Bearings take the metal shield to prevent the dust.

 

 

 

 

Type 

Track Roller Bearings 

Part No.

LV202-40ZZ LV202-40 2RS

Size 

15mmX40mmX18mm 

Seals Type

Steel Shield & Rubber Seals

Structure 

Double Row 

Brand

NMN or as your requirements

Material

Chrome steel, Carbon steel, Stainless steel

Seal type

Open, Z, ZZ, RS, 2RS etc

Color

Various colors, customized

Logo

Can be customized

Precision

ABEC-1, ABEC-3, ABEC-5, ABEC-7

Clearance

C0,C1,C2,C3,C4,C5 etc.

Noise

Z1,Z2,Z3,Z4

Vibration

V1,V2,V3,V4

Delivery time

3-35 days after receive the prepayment, according to the quantity

Payment term

T/T, paypal, western union, money gram, L/C

Package 

1, plastic bag + outer carton + pallet

2, single box + outer carton + pallet

3, tube package + box + carton + pallet

Or according to your requirements

Deep Groove Ball Bearing 

Manufacturers: Radial ball bearings are CZPT to accommodate low to heavy radial loads and low to moderate thrust loads in either direction. Radial Deep Groove Ball Bearings are available with metal shields (ZZ) or rubber seals (2RS). Several tolerance grades (Abec 1-9), internal clearance (C2 to C4) and cage designs are available to best suit the running precision and speed of the application.

Common Options of Radial Deep Groove Ball Bearings:

  • ZZ– Two Metal Shields
  • 2RS– Two Rubber Seals
  • NR– Snap Ring
  • M– Brass Cage
  • C0– Normal Internal Clearance
  • C3– Greater than normal

Single row deep groove ball bearings are used in a wide variety of applications, they are simple in design, non-separable, suitable for high speeds and are robust in operation, and need little maintenance. Deep raceway grooves and the close conformity between the raceway grooves and the balls enable deep groove ball bearings to accommodate axial loads in both directions, in addition to radial loads.

Single row deep groove ball bearings are manufactured as open type (unsealed), sealed and shielded, the most popular sizes of deep groove ball bearings are also produced in sealed versions with shields or contact seals on 1 or both sides, the bearings with shields or seals on both sides are lubricated for life and are maintenance free. A sealed bearings seals has contact on the bearings inner and outer, a shielded bearings shield has contact on the outer only, and Shielded bearings are primarily intended for applications where the inner ring rotates. If the outer ring rotates, there is a risk that the grease will leak from the bearing at high speeds.


About this item

  • Size: 6200-2RS (Inner Dia.=10mm, Outer Dia.=30mm, Thickness=9mm)
  • Sealed on BOTH SIDES of the bearing to keep lubricant in. Suitable for complex environment
  • Made from Carbon Steel, durability and resistance to under heavy loads
  • ABEC Tolerance 1 (P0), Z1 Noise Level for most general use
  • Pre-Lubricated, Easy to maintain

Product Specifications

Bearing Type Ball Bearing
Compatible Lubricant Type Oil
Item Thickness 9 millimeters millimeters
Material Carbon Steel
Measurement System Metric
Size 10mmx30mmx9mm

 

 

Company Profile

 

ZheJiang CZPT Bearing Co., Ltd. is affiliated to ZheJiang Kaidi Bearing Group – a specialized manufacturer of kinds of bearings for about 20 years.

Our company is specialized in producing Deep Groove Ball Bearings, Tapered Roller Bearings, Spherical Roller Bearings and Special Bearings in accordance with Customers’ designs.Our bearings has been widely applied into agricultural equipments, home appliances, power equipments, machine tools, automotives and engineering machinery, etc.

Our Products

ZheJiang CZPT Bearing Co., Ltd. is a specialized manufacturer of ball bearings for about 20 years. Our main products include:
1, Miniature Bearings: like 608, 609, 625, 626, 693, 695, etc;
2, Deep Groove Ball Bearings: like 6000, 6200, 6300, 6800, 6900, 16000 Series;
3,Non-Standard Bearings: U grooved bearings, V grooved bearings, double grooved bearings, bearing rollers with or without plastic injection. 4,Pillow Block Bearing: UCP/ UCF/ UCFL;
5,Tapered Roller Bearings
6,Linear Motion Bearings

 

Processing Process

we have manufacture bearing more than 20 years, and can produce different style of bearings. Our factory starts production from raw materials. We have a 20-person R&D team and launch a new product every 5 days. We have more than 600 people to produce bearing team, we produce products, the price is the most competitive in China. 

Packaging & Shipping

 

Our Activities

 

FAQ

1.Q:Do you know the Detail Size for the Bearing ?
A:Of Couse.We have a database for all kinds of Bearing.

2.Q: This Size of Bearing is common parts?
A:These are standard size bearing.

3.Q:Are you a factory or a Trade Company for Bearing ?
A:We are the factory.

4.Q:How many the MOQ of the Bearing?
A:1pcs accept for the standard size. 
If you purchase the Non-Standard for BearingThe MOQ is 50pcs.

5.Q:Could you supply free sample of bearing for our test?
A:Yes,Free sample can be offer.

6.Q:Could you accept OEM and customize?
A:Yes, OEM is accepted and we can customize for you according to sample or drawing.

7.Q:Do you have stocks?
A:Yes, most of the bearings showing on alibaba are in stock,especialy big bearings.

Contact Us

Jane
ZheJiang CZPT Bearing Co., Ltd.


 
 
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 15°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Samples:
US$ 0.05/Set
1 Set(Min.Order)

|

Order Sample

customized
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

track bearing

Can you provide examples of industries and applications where track bearings are frequently used?

Track bearings find extensive use in various industries and applications where smooth and controlled motion along tracks or guide rails is required. Let’s explore some examples of industries and applications where track bearings are frequently used:

  • Material Handling and Conveying: Track bearings are widely employed in material handling and conveying systems, such as conveyor belts, roller conveyors, and overhead cranes. They facilitate the smooth movement of goods, packages, and components along the tracks, ensuring efficient and reliable transportation within warehouses, distribution centers, manufacturing facilities, and airports.
  • Automotive and Transportation: Track bearings are utilized in various automotive applications, including suspension systems, steering systems, and sliding doors. They enable smooth and precise movement of components, contributing to vehicle performance, comfort, and safety. Additionally, track bearings are used in railway applications, such as railcar doors, sliding mechanisms, and track guidance systems.
  • Aerospace and Defense: Track bearings play a crucial role in aerospace and defense applications, including aircraft landing gears, flap systems, and missile launchers. They provide the necessary support, guidance, and load-carrying capacity for critical components, ensuring smooth and controlled motion in demanding operating conditions.
  • Industrial Machinery: Track bearings are commonly found in various industrial machinery and equipment. They are used in machine tools, robotics, printing presses, industrial ovens, and packaging machines, among others. In these applications, track bearings contribute to precise motion control, accurate positioning, and reliable performance of moving components.
  • Construction and Mining: Track bearings are extensively employed in construction and mining equipment, such as excavators, bulldozers, cranes, and drilling machines. They provide support and guidance for the movable parts, allowing efficient and controlled movement in rugged and demanding environments.
  • Medical and Healthcare: Track bearings are utilized in various medical and healthcare applications. They are used in hospital beds, medical imaging equipment, laboratory automation systems, and patient handling devices. Track bearings enable smooth and quiet operation, precise positioning, and patient comfort in these critical healthcare settings.
  • Renewable Energy: Track bearings are employed in renewable energy systems, including solar tracking systems and wind turbine pitch and yaw mechanisms. They enable the precise tracking of solar panels and the controlled adjustment of wind turbine blades, maximizing energy capture and optimizing system performance.

These examples represent just a fraction of the many industries and applications where track bearings are frequently used. The versatility, reliability, and precise motion control provided by track bearings make them a fundamental component in numerous mechanical systems across various sectors.

track bearing

How do track bearings enhance the overall efficiency and functionality of linear motion systems?

Track bearings play a crucial role in enhancing the overall efficiency and functionality of linear motion systems. They offer several benefits that contribute to improved performance, increased reliability, and enhanced functionality. Here’s a detailed explanation:

  • Reduced Friction: Track bearings are designed to minimize friction between moving components, allowing for smoother and more efficient linear motion. By reducing friction, they help to optimize the efficiency of the system, reducing energy consumption and minimizing wear on the components.
  • Precision and Stability: Track bearings provide precise guidance and stability to the linear motion system. They ensure accurate and repeatable motion along the intended path, allowing for precise positioning and control. This is particularly important in applications that require high accuracy, such as CNC machines, robotics, and automated assembly lines.
  • Load Distribution: Track bearings distribute the load evenly along their length, allowing for efficient load transfer and reducing the concentration of forces on specific components. This helps to prevent excessive wear, deformation, and premature failure of the system, improving overall reliability and longevity.
  • Handling Heavy Loads: Track bearings are specifically designed to handle heavy loads in linear motion systems. They offer high load capacities and robust construction, enabling them to support and move heavy objects with ease. This capability is essential in industries such as material handling, construction, and transportation.
  • Smooth and Quiet Operation: Track bearings are engineered to provide smooth and quiet operation, minimizing noise and vibrations in the linear motion system. This is especially important in applications where noise reduction and comfort are critical, such as in medical equipment, office automation, and consumer electronics.
  • Versatility and Adaptability: Track bearings come in various designs, sizes, and configurations to accommodate different linear motion system requirements. They can be easily integrated into existing systems or customized to fit specific applications. This versatility allows for greater flexibility and adaptability in designing and implementing linear motion solutions.
  • Maintenance and Serviceability: Track bearings are designed for ease of maintenance and serviceability. They often feature removable components, such as seals or shields, that allow for inspection, cleaning, and lubrication. This simplifies maintenance tasks and reduces downtime, contributing to improved overall system efficiency and uptime.

By incorporating track bearings into linear motion systems, industries can benefit from increased efficiency, improved performance, and enhanced functionality. Whether it’s achieving precise positioning, handling heavy loads, reducing friction, or ensuring smooth operation, track bearings play a vital role in optimizing the overall efficiency and functionality of linear motion systems.

track bearing

Are there specific materials commonly used in the construction of track bearings?

Yes, specific materials are commonly used in the construction of track bearings to ensure their durability, load-carrying capacity, and resistance to various operating conditions. Let’s discuss the materials commonly used for different components of track bearings:

  • Outer and Inner Rings: The outer and inner rings of track bearings are typically made from high-quality bearing steels such as chrome steel (e.g., AISI 52100) or stainless steel. These materials offer excellent strength, hardness, and wear resistance. Chrome steel is the most commonly used material due to its favorable combination of mechanical properties and cost-effectiveness. In some cases, specialized alloys or heat-treated steels may be used to enhance specific properties like corrosion resistance or high-temperature performance.
  • Rolling Elements: The rolling elements in track bearings are commonly made from bearing-grade steel or ceramic materials. Bearing-grade steel, similar to the materials used for the outer and inner rings, offers high strength and wear resistance. Ceramic materials, such as silicon nitride (Si3N4) or zirconia (ZrO2), are also used in certain applications where their advantages, such as high hardness, low density, and resistance to corrosion and high temperatures, are desired.
  • Cage: The cage in track bearings is typically made from materials such as steel, brass, or engineered polymers. Steel cages are commonly used due to their strength and durability. Brass cages offer good corrosion resistance and are suitable for certain operating environments. Engineered polymers, such as polyamide (nylon), are used in applications where low friction, noise reduction, or lightweight design is desired.
  • Seals or Shields: The seals or shields used in track bearings are made from various materials depending on the specific requirements. Common materials include rubber or synthetic elastomers for seals, and steel or stainless steel for shields. These materials provide effective protection against contaminants while maintaining proper lubrication within the bearing assembly.
  • Lubrication: Lubricants used in track bearings can vary depending on the application and operating conditions. Common lubrication options include mineral oils, synthetic oils, and greases. The lubricant’s formulation is carefully chosen to provide adequate lubrication, reduce friction and wear, and protect against corrosion and contamination.

Overall, the choice of materials for track bearings is influenced by factors such as load requirements, operating conditions (including temperature and moisture levels), desired lifespan, and cost considerations. By selecting appropriate materials for each component, track bearings can deliver reliable performance and extended service life in a wide range of industrial and mechanical applications.

China factory Precision V Grooved Track Wheel Bearings for CNC Guide Rail LV202-40zz LV202-40 2RS V Track Roller Bearings   bearing airChina factory Precision V Grooved Track Wheel Bearings for CNC Guide Rail LV202-40zz LV202-40 2RS V Track Roller Bearings   bearing air
editor by CX 2024-04-16

China manufacturer High precision W1X W2X W3X W4X W type v groove guide wheel track roller bearing for linear rail connecting rod bearing

Product Description

Door & Window Roller
The roller wheels are usually made of 2 parts, 1 is the inside bearing and the other is the plastic shell covered on the bearing.
Bearing Material: Chrome Steel (GCr15), Carbon Steel
Sheel Material: Nylon, Imported POM, PA66, TPE, PU, etc.
Size: Customized based on buyer’s drawing or samples.

OEM Service: Custom material, size, logo, packing. 
Certificate: CE

Picture Display:

Packing:

Universal Packing

Without any logo on bearings or packing.

HXHV Packing

With our brand HXHV on bearings and packing.

Customized Packing

Depends on buyer’s requirements.

Certificate:
Our bearings comes with CE certificate and our company has been verified by SGS Group. Please contact us for clear certificate photos.

Other Bearings:
We supply different types of ball and roller bearings, slewing bearings, mini bearings, ceramic bearings, Linear guides. 

To get the exact price, please contact us. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Warranty: Yes
Certification: CE, SGS
Splittable: Unsplittable
Surface Treatment: Polished
Material: Steel
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

track bearing

Can you explain the maintenance and lubrication requirements for track bearings?

Maintenance and lubrication are essential aspects of ensuring the optimal performance and longevity of track bearings. Proper maintenance practices and appropriate lubrication help minimize wear, reduce friction, prevent corrosion, and extend the service life of the bearings. Here’s an explanation of the maintenance and lubrication requirements for track bearings:

Maintenance Requirements:

  • Cleanliness: It is crucial to maintain a clean operating environment for track bearings. Regularly remove dirt, dust, and debris from the track and bearing surfaces to prevent contamination, which can lead to premature wear and damage.
  • Inspection: Periodically inspect the track bearings for signs of wear, damage, or misalignment. Check for excessive play, noise, or roughness during operation. If any issues are detected, take appropriate measures such as bearing replacement or realignment to ensure optimal performance.
  • Tightening and Fasteners: Check the tightness of fasteners, such as bolts or screws, that secure the track bearings. Loose fasteners can lead to misalignment or instability. Ensure that all fasteners are properly tightened according to the manufacturer’s specifications.
  • Track Alignment: Proper track alignment is crucial for smooth and efficient operation of track bearings. Regularly check the alignment of the track or guide rails and make necessary adjustments to maintain proper alignment, minimizing excessive loads and wear on the bearings.
  • Load Limits: Adhere to the specified load limits for the track bearings. Exceeding the recommended load capacity can cause premature wear and failure. Consider the dynamic and static load ratings of the bearings to ensure they are not subjected to excessive loads that can compromise their performance.

Lubrication Requirements:

  • Proper Lubricant Selection: Select the appropriate lubricant based on the operating conditions, such as temperature, load, and speed. Consult the manufacturer’s recommendations or seek expert advice to ensure the lubricant’s compatibility with the track bearings and the specific application.
  • Regular Lubrication: Follow a regular lubrication schedule as recommended by the manufacturer. This may involve applying lubricant at specified intervals or based on the operating hours. Adequate lubrication helps minimize friction, reduce wear, and maintain proper functioning of the track bearings.
  • Correct Lubrication Method: Apply the lubricant using the appropriate method, whether it’s manual greasing, automatic lubrication systems, or specialized lubrication techniques. Ensure that the lubricant reaches all necessary contact points and provides sufficient coverage to the bearing surfaces.
  • Monitoring and Replenishment: Monitor the lubricant levels regularly and replenish as needed. In some cases, track bearings may have built-in lubrication systems that require periodic refilling or maintenance. Keep track of the lubricant condition and replace it when it becomes contaminated or degraded.
  • Environmental Considerations: Consider the operating environment when selecting the lubricant. Extreme temperatures, exposure to moisture, or the presence of chemicals or contaminants may require special lubricants that can withstand these conditions and provide effective protection and lubrication.

It is important to consult the manufacturer’s guidelines and recommendations specific to the track bearings being used. Following the recommended maintenance and lubrication practices ensures optimal performance, reduces the risk of premature failure, and maximizes the overall lifespan of the track bearings.

track bearing

Are there potential challenges or limitations in using track bearings in specific industries?

While track bearings are widely used in various industries for their ability to support linear motion and handle heavy loads, there can be potential challenges and limitations associated with their use in specific industries. Here’s a detailed explanation:

1. Contamination and Harsh Environments:

Industries such as mining, construction, and agriculture often operate in harsh environments with high levels of contamination, including dust, dirt, and moisture. These contaminants can enter the track bearings and cause accelerated wear, reduced performance, and potential failure. Regular maintenance and appropriate sealing measures are required to mitigate these challenges.

2. High-Temperature Environments:

In industries like metal processing, glass manufacturing, and foundries, track bearings may be exposed to high temperatures. Excessive heat can affect the lubrication properties and structural integrity of bearings, leading to premature failure. Selecting track bearings specifically designed for high-temperature applications and using suitable lubricants are necessary to overcome this limitation.

3. Corrosive Chemicals:

Industries such as chemical processing, food and beverage, and wastewater treatment involve exposure to corrosive chemicals. Corrosion can significantly affect the performance and lifespan of track bearings. Choosing bearings made from corrosion-resistant materials or applying protective coatings can help address this challenge.

4. Heavy Load and Impact:

Industries like material handling, mining, and construction often require track bearings to withstand heavy loads and frequent impacts. Excessive load or impact can lead to premature wear, deformation, or even catastrophic failure of the bearings. Selecting track bearings with appropriate load capacities and impact resistance is crucial in these industries.

5. Precision and Accuracy:

In industries such as robotics, semiconductor manufacturing, and precision machining, track bearings may need to meet stringent requirements for precision and accuracy. Any deviation or play in the bearings can impact the overall performance and quality of the process. Using high-precision track bearings and ensuring proper alignment and installation are essential in these cases.

6. Speed and Acceleration:

Applications involving high-speed or rapid acceleration, such as automated assembly lines or conveyor systems, can impose additional challenges on track bearings. Excessive speed or acceleration can generate heat and vibration, leading to increased wear and reduced bearing life. Choosing track bearings with suitable speed and acceleration ratings is vital in these industries.

It is important to consult with bearing manufacturers or industry experts to identify and address any potential challenges or limitations specific to the industry and application at hand. By understanding these challenges and selecting track bearings designed to overcome them, industries can optimize performance, reliability, and longevity while mitigating risks and ensuring smooth operation.

track bearing

Can you describe the load-carrying capacity and load ratings of track bearings?

Track bearings are designed to withstand and carry various types of loads while maintaining smooth and controlled motion along a track or guide rail. The load-carrying capacity and load ratings of track bearings are crucial factors to consider when selecting the appropriate bearing for a specific application. Let’s delve into these concepts:

Load-Carrying Capacity:

The load-carrying capacity of a track bearing refers to its ability to support and distribute the applied loads without excessive deformation or failure. It is influenced by several factors, including the bearing’s design, materials, and operating conditions. The load-carrying capacity is typically specified in terms of static load capacity and dynamic load capacity.

The static load capacity indicates the maximum load that a track bearing can support without permanent deformation. It is determined by the bearing’s internal geometry, material strength, and the contact area between the rolling elements and raceways. Static loads are those that do not cause relative motion between the bearing and the track, such as when the bearing is stationary or subjected to a constant load.

The dynamic load capacity represents the maximum load that a track bearing can handle while still allowing smooth rolling motion. It takes into account the bearing’s ability to handle both radial and axial loads and considers factors such as the bearing’s internal clearance, lubrication, and operating speed. Dynamic loads are those that cause relative motion between the bearing and the track, such as when the bearing is subjected to varying loads or subjected to motion along the track.

Load Ratings:

Load ratings provide standardized values that indicate the maximum allowable loads for track bearings based on industry standards. These load ratings are commonly provided by bearing manufacturers and help users select the appropriate bearing for their specific application requirements. The two primary load ratings used for track bearings are the radial load rating and the axial load rating.

The radial load rating specifies the maximum radial load that a track bearing can withstand while maintaining proper performance and service life. It is expressed as a static load rating and a dynamic load rating. The static radial load rating indicates the maximum radial load that the bearing can support without permanent deformation, while the dynamic radial load rating represents the maximum radial load that the bearing can handle under typical operating conditions.

The axial load rating indicates the maximum axial load that a track bearing can withstand without excessive deformation or failure. It considers the applied axial force in the direction perpendicular to the track or guide rail. The axial load rating is typically provided as a static load rating and a dynamic load rating.

It’s important to note that load ratings are based on specific operating conditions, such as a certain speed, lubrication, and temperature. It is necessary to consider the actual operating conditions and factors such as shock loads, vibrations, and misalignments when applying load ratings to real-world applications.

By understanding the load-carrying capacity and load ratings of track bearings, engineers and designers can make informed decisions to ensure reliable and safe performance of the bearings in their applications.

China manufacturer High precision W1X W2X W3X W4X W type v groove guide wheel track roller bearing for linear rail   connecting rod bearingChina manufacturer High precision W1X W2X W3X W4X W type v groove guide wheel track roller bearing for linear rail   connecting rod bearing
editor by CX 2024-04-11

China wholesaler Embroidery Machine Guide Rail Track Roller Bearing Fr25 bearing block

Product Description

embroidery machine CZPT rail Track Roller Bearing FR25

FR .., FR..R and LR .., LR..R series rail wheel mounting and preload adjustment is carried out by its eccentric inner ring.
FR..Z and LR..Z series rollers are concentric structure design, structural design eccentric rollers with the suffix “A” to show the difference in the inner side of which there are 2 blind holes used to adjust the gap, if the wheel zero bit position, the rack and the gear backlash of 0.05mm. excessive preload may shorten the life of the entire system, while the lack of pretension, the system is operating, the wheel will not operate, or caused due to poor engagement system unexpected wear. friction CZPT rollers having a low coefficient of friction. Since the rails are usually equipped with a scraper brush, the coefficient is usually a slight increase in minor corrosion protection for harsh environments, we also produce made of stainless steel rollers these rollers have the suffix “R” to show the difference.

FR series can supply VEE roller bearing model are as follows: FR10 FR10Z FR15 FR15Z FR20 FR20Z FR22 FR22Z FR25 FR25Z FR35 FR35Z

We could also supply LR series with through-hole pins support roller bearing models are as follows: LR10 LR10Z LR15 LR15Z LR20 LR20Z LR25 LR25Z LR35 LR35Z

model dimension (mm)
A B C D e F G H L D1 D2 D3 D4 D5 d d1 DP R
FR10 22.62 10.5 10 1 1 2 7 15.4 30 6.4 15 20.8 11 42 9 2.6 3 200
FR10Z 22.62 10.5 10 1 0 2 7 15.4 30 6.4 15 20.8 11 42 9 2.6 3 200
FR15 29.65 12 12 1 1 2 9 18.5 35 8.4 15 23.8 14 53 14 2.6 3 250
FR15Z 29.65 12 12 1 0 2 9 18.5 35 8.4 15 23.8 14 53 14 2.6 3 250
FR20 36.2 16 15 1 1 3 11 22.5 46 10.5 20 22.7 18 63 20 2.6 3 300
FR20Z 36.2 16 15 1 0 3 11 22.5 46 10.5 20 22.7 18 63 20 2.6 3 300
FR22 39.4 16 15 1 2 3 11 27.5 46 10.5 20 33 18 70 20 2.6 3 300
FR22Z 39.4 16 15 1 0 3 11 27.5 46 10.5 20 33 18 70 20 2.6 3 300
FR25 43.42 20.5 20 1 1 3.5 13 27.5 60 13 25 35.6 20 77 24 4.1 4.5 360
FR25Z 43.42 20.5 20 1 0 3.5 13 27.5 60 13 25 35.6 20 77 24 4.1 4.5 360
FR35 61.25 30 25 1 1 7.5 18 42 84 17 40 56.9 30 ## 35 4.1 4.5 500
FR35Z 61.25 30 25 1 0 7.5 18 42 84 17 40 56.9 30 ## 35 4.1 4.5 500
LR10   10.5 10 1 1 2 7 15.4 30 6.4 15 20.8 11 47   2.6 3 500
LR10Z   10.5 10 1 0 2 7 15.4 30 6.4 15 20.8 11 47   2.6 3 500
LR15   12 12 1 1 2 9 18.5 35 8.4 15 23.8 14 47   2.6 3 500
LR15Z   12 12 1 0 2 9 18.5 35 8.4 15 23.8 14 47   2.6 3 500
LR20   16 15 1 1 3 11 22.5 46 10.5 20 22.7 18 72   2.6 3 500
LR20Z   16 15 1 0 3 11 22.5 46 10.5 20 22.7 18 72   2.6 3 500
LR25   20.5 20 1 1 3.5 13 27.5 60 13 25 35.6 20 85   4.1 4.5 500
LR25Z   20.5 20 1 0 3.5 13 27.5 60 13 25 35.6 20 85   4.1 4.5 500
LR35   30 25 1 1 7.5 18 42 84 17 40 56.9 30 ##   4.1 4.5 500
LR35Z   30 25 1 0 7.5 18 42 84 17 40 56.9 30 ##   4.1 4.5 500

Specifications

1. Cheap and high quality bearing
2. OEM service offered
3. Low noise, long life
4. Ease of assembly
5. Stock available

Packaging & Delivery
A. According to customer’s requirements.
B.The outer is color polybag + box + carton, industrial standard packaging.
Delivery Detail: 1-3 working days after order confirmed. (depend on the amount)

Application
For mounting wherever axial and radial loads are expected
For most parts for torque transmission
Home appliances, electric motors, automotive components

W series V groove bearing size:

Designation

      A1 A2 Chamfer r/min   Weight
Bore O.D. Width mm Load
mm mm mm    
  D1 D B A1 A2 R/min Cw(KN) Cow(KN) Kg
W1 4.763 19.56 7.87 7.9. 11.86 0.3 2.2 1 11
W1X 4.763 19.56 7.87 7.93 11.86 0.3 2.2 1 11
W2 9.525 30.73 11.1 12.7 18.24 0.3 4.9 2.5 38
W2X 9.525 30.73 11.1 12.7 18.24 0.3 4.9 2.5 38
W3 12 45.72 15.88 19.05 26.98 0.6 9.4 4.9 130
W3X 12 45.72 15.88 19.05 26.98 0.6 9.4 4.9 130
W4 15 59.94 19.05 25.4 34.93 1 14.8 8.2 280
W4X 15 59.94 19.05 25.4 34.93 1 14.8 8.2 280
RM1ZZ 4.763 19.56 7.87 7.9. 11.86 0.3 2.2 1 11
RM1 2RS 4.763 19.56 7.87 7.93 11.86 0.3 2.2 1 11
RM2ZZ 9.525 30.73 11.1 12.7 18.24 0.3 4.9 2.5 38
RM2 2RS 9.525 30.73 11.1 12.7 18.24 0.3 4.9 2.5 38
RM3ZZ 12 45.72 15.88 19.05 26.98 0.6 9.4 4.9 130
RM3 2RS 12 45.72 15.88 19.05 26.98 0.6 9.4 4.9 130
RM4ZZ 15 59.94 19.05 25.4 34.93 1 14.8 8.2 280
RM4 2RS 15 59.94 19.05 25.4 34.93 1 14.8 8.2 280

model 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Single
Outer Dimension: Small and Medium-Sized (60-115mm)
Material: Bearing Steel
Spherical: Non-Aligning Bearings
Load Direction: Radial Bearing
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

track bearing

What are the benefits of using self-lubricating or maintenance-free track bearings?

Using self-lubricating or maintenance-free track bearings can offer several significant benefits in terms of convenience, performance, and cost-effectiveness. Let’s explore the advantages of utilizing self-lubricating or maintenance-free track bearings:

  • Elimination of External Lubrication: One of the primary advantages of self-lubricating or maintenance-free track bearings is that they eliminate the need for external lubrication. These bearings are pre-lubricated with a solid lubricant or have a built-in lubrication system that provides a continuous supply of lubrication to the bearing surfaces. This eliminates the requirement for manual lubrication or periodic re-lubrication, saving time and effort in maintenance tasks.
  • Extended Service Life: Self-lubricating or maintenance-free track bearings are designed to provide long service life. The presence of a solid lubricant or a self-lubricating material within the bearing helps reduce friction, wear, and the risk of surface damage. This results in improved durability and extended service life, reducing the frequency of bearing replacements and downtime for maintenance.
  • Reduced Contamination and Cleanliness: External lubricants, such as grease or oil, can attract and accumulate contaminants, such as dust, dirt, or debris. In contrast, self-lubricating or maintenance-free track bearings minimize the risk of contamination since they do not require additional lubricants. This helps maintain a cleaner operating environment and reduces the potential for bearing failure due to contamination-related issues.
  • Improved Reliability and Performance: Self-lubricating or maintenance-free track bearings offer consistent and reliable performance throughout their service life. The presence of an effective lubrication system ensures proper lubrication even under demanding operating conditions, such as high temperatures or high loads. This contributes to smoother and more predictable motion, reduced friction, and enhanced overall performance of the machinery or equipment.
  • Cost Savings: While self-lubricating or maintenance-free track bearings may have a higher initial cost compared to standard bearings, they can result in cost savings over the long term. The elimination of manual lubrication and the extended service life of these bearings reduce maintenance requirements, labor costs, and the need for lubrication supplies. Additionally, the increased reliability and performance can minimize downtime and associated production losses.
  • Ease of Installation: Self-lubricating or maintenance-free track bearings are typically designed for easy installation. They often come pre-assembled, pre-lubricated, or with integral lubrication systems, simplifying the installation process. This can save time and effort during initial setup or replacement of bearings in machinery or equipment.

Overall, self-lubricating or maintenance-free track bearings offer the advantages of reduced maintenance, extended service life, improved reliability, and cost savings. These bearings are particularly beneficial in applications where regular lubrication is challenging, time-consuming, or not feasible, or in environments where contamination control is critical.

track bearing

Are there potential challenges or limitations in using track bearings in specific industries?

While track bearings are widely used in various industries for their ability to support linear motion and handle heavy loads, there can be potential challenges and limitations associated with their use in specific industries. Here’s a detailed explanation:

1. Contamination and Harsh Environments:

Industries such as mining, construction, and agriculture often operate in harsh environments with high levels of contamination, including dust, dirt, and moisture. These contaminants can enter the track bearings and cause accelerated wear, reduced performance, and potential failure. Regular maintenance and appropriate sealing measures are required to mitigate these challenges.

2. High-Temperature Environments:

In industries like metal processing, glass manufacturing, and foundries, track bearings may be exposed to high temperatures. Excessive heat can affect the lubrication properties and structural integrity of bearings, leading to premature failure. Selecting track bearings specifically designed for high-temperature applications and using suitable lubricants are necessary to overcome this limitation.

3. Corrosive Chemicals:

Industries such as chemical processing, food and beverage, and wastewater treatment involve exposure to corrosive chemicals. Corrosion can significantly affect the performance and lifespan of track bearings. Choosing bearings made from corrosion-resistant materials or applying protective coatings can help address this challenge.

4. Heavy Load and Impact:

Industries like material handling, mining, and construction often require track bearings to withstand heavy loads and frequent impacts. Excessive load or impact can lead to premature wear, deformation, or even catastrophic failure of the bearings. Selecting track bearings with appropriate load capacities and impact resistance is crucial in these industries.

5. Precision and Accuracy:

In industries such as robotics, semiconductor manufacturing, and precision machining, track bearings may need to meet stringent requirements for precision and accuracy. Any deviation or play in the bearings can impact the overall performance and quality of the process. Using high-precision track bearings and ensuring proper alignment and installation are essential in these cases.

6. Speed and Acceleration:

Applications involving high-speed or rapid acceleration, such as automated assembly lines or conveyor systems, can impose additional challenges on track bearings. Excessive speed or acceleration can generate heat and vibration, leading to increased wear and reduced bearing life. Choosing track bearings with suitable speed and acceleration ratings is vital in these industries.

It is important to consult with bearing manufacturers or industry experts to identify and address any potential challenges or limitations specific to the industry and application at hand. By understanding these challenges and selecting track bearings designed to overcome them, industries can optimize performance, reliability, and longevity while mitigating risks and ensuring smooth operation.

track bearing

Can you describe the load-carrying capacity and load ratings of track bearings?

Track bearings are designed to withstand and carry various types of loads while maintaining smooth and controlled motion along a track or guide rail. The load-carrying capacity and load ratings of track bearings are crucial factors to consider when selecting the appropriate bearing for a specific application. Let’s delve into these concepts:

Load-Carrying Capacity:

The load-carrying capacity of a track bearing refers to its ability to support and distribute the applied loads without excessive deformation or failure. It is influenced by several factors, including the bearing’s design, materials, and operating conditions. The load-carrying capacity is typically specified in terms of static load capacity and dynamic load capacity.

The static load capacity indicates the maximum load that a track bearing can support without permanent deformation. It is determined by the bearing’s internal geometry, material strength, and the contact area between the rolling elements and raceways. Static loads are those that do not cause relative motion between the bearing and the track, such as when the bearing is stationary or subjected to a constant load.

The dynamic load capacity represents the maximum load that a track bearing can handle while still allowing smooth rolling motion. It takes into account the bearing’s ability to handle both radial and axial loads and considers factors such as the bearing’s internal clearance, lubrication, and operating speed. Dynamic loads are those that cause relative motion between the bearing and the track, such as when the bearing is subjected to varying loads or subjected to motion along the track.

Load Ratings:

Load ratings provide standardized values that indicate the maximum allowable loads for track bearings based on industry standards. These load ratings are commonly provided by bearing manufacturers and help users select the appropriate bearing for their specific application requirements. The two primary load ratings used for track bearings are the radial load rating and the axial load rating.

The radial load rating specifies the maximum radial load that a track bearing can withstand while maintaining proper performance and service life. It is expressed as a static load rating and a dynamic load rating. The static radial load rating indicates the maximum radial load that the bearing can support without permanent deformation, while the dynamic radial load rating represents the maximum radial load that the bearing can handle under typical operating conditions.

The axial load rating indicates the maximum axial load that a track bearing can withstand without excessive deformation or failure. It considers the applied axial force in the direction perpendicular to the track or guide rail. The axial load rating is typically provided as a static load rating and a dynamic load rating.

It’s important to note that load ratings are based on specific operating conditions, such as a certain speed, lubrication, and temperature. It is necessary to consider the actual operating conditions and factors such as shock loads, vibrations, and misalignments when applying load ratings to real-world applications.

By understanding the load-carrying capacity and load ratings of track bearings, engineers and designers can make informed decisions to ensure reliable and safe performance of the bearings in their applications.

China wholesaler Embroidery Machine Guide Rail Track Roller Bearing Fr25   bearing blockChina wholesaler Embroidery Machine Guide Rail Track Roller Bearing Fr25   bearing block
editor by CX 2024-03-25

China Best Sales Chrome Steel Miniature V Deep Groove Ball Bearing V624zz V608zz V625zz V604zz 629 V629zz for Guide Rail Track Roller bearing assembly

Product Description

1

 

Product Parameters

 

Deep groove ball bearing 83A831GC5-KOYO – 36.2x67x23 mm

Overview
Quick Details

 Category: Deep groove ball bearing                                    Quality: Premium

 Brand: KOYO                                                                       Inner diam.: 36.2 mm

 Outer diam.: 67 mm                                                              Width: 23mm

 Weight: 0.316 kg                                                                   N°EAN13:  3663952194837

       
Supply Ability
Supply Ability:100000 Piece/Pieces per Week

Deep groove ball bearing 83A831GC5-KOYO – 36.2x67x23 mm

1.Type:Auto Deep Groove Ball Bearing

2.Application:Automotive Bearing

3.Size:36.2x67x23 mm

4.Package:Single packing box Industry Carton Box

5.Bearing picture:

Our Advantages

 

Quality Control 

KYJEN has developed a comprehensive quality assurance program and quality system. This program and system establishes controls throughout the entire manufacturing cycle — from raw material purchasing and product manufacturing to end-item delivery. It also assures meeting quality objectives and minimizes the possibility of compromises which could affect product quality and reliability. The quality assurance program is complete and responsive to all requirements of ISO9001:2000. 

Our Mission

We are dedicated to providing our customers competitive price and excellent service.

Our Values

• Customers – Our first priority is to increase our customer ‘s competitiveness in their markets by offering outstanding service,best price and products. We maintain strong and long-term relationships with our customers and focus our work on their total satisfaction.

• Integrity – We set high personal standards for ourselves and expect the people with whom we conduct business to do the same. In our company,we keep our promises.

• Speed – We know customers have urgent needs. We are skilled at effective communication to interact with customers. In order to provide prompt service,emails and instant message are widely used.

• People – We believe that our people are our greatest resource; therefore, we empower them, give them the opportunity to develop and grow.

Chik has been successful cooperation with many overseas customers, leaving good reputation of credibility with a high-quality product quality. With adequate resource, strict quality control, high-quality service, and competitive price, Chik has been the first choice of many customers as bearing supplier. OEM is also welcomed as an optional cooperation method.

 

Applications

Packaging & Shipping

 

FAQ

 

Q: Why did you choose us?

A. We provide the best quality bearings with reasonable price, low friction, low noise and long service life.

B. With sufficient stock and fast delivery, you can choose our freight forwarder or your freight forwarder.

C. The best service provided by a well-trained international sales team.

Q: Do you accept small orders?

Surely, once your bearings are standard size bearings, even one, we will also accept.

Q: How long is your delivery time?

Generally speaking, if the goods are in stock, it is 1-3 days. If the goods are out of stock, it will take 6-10 days, depending on the quantity of the order.

Q: Do you provide samples? Is it free or extra?

Yes, we can provide a small amount of free samples. Do you mind paying the freight?

Q: What should I do if I don’t see the type of bearings I need?

We have too many bearing series numbers. Sometimes we can’t put them all on web. Just send us the inquiry and we will be very happy to send you the bearing details.

Welcome to contact me anytime!
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Seal Type: Zz, 2RS
HRC: 58-62
Ball Class: G16;G10
Clearance: C0;C2;C3;C4
Tolearance: P0;P6;P5
Structure: Inch Roller Bearing
Samples:
US$ 0.5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

track bearing

What are the considerations for selecting the right track bearings for a particular application?

Selecting the right track bearings for a particular application requires careful consideration of various factors to ensure optimal performance, reliability, and longevity. Here are the key considerations to keep in mind:

  • Load Requirements: Assess the expected load conditions in the application. Consider both the static and dynamic loads that the track bearings will need to support. Determine the maximum load capacity required to ensure that the selected bearings can handle the anticipated loads without premature failure or excessive wear.
  • Speed and Acceleration: Evaluate the speed and acceleration requirements of the application. Higher speeds and rapid accelerations can impose additional stresses on the track bearings. Choose bearings with suitable speed and acceleration ratings to ensure they can operate effectively within the desired range without compromising performance or causing premature wear.
  • Environmental Factors: Consider the operating environment of the application. Evaluate factors such as temperature extremes, moisture, dust, chemicals, and potential exposure to corrosive substances. Select track bearings that are designed to withstand the specific environmental conditions to ensure optimal performance and longevity.
  • Track and Rail Compatibility: Assess the compatibility of the track bearings with the existing track or rail system. Consider factors such as track geometry, dimensional requirements, and mounting options. Ensure that the selected bearings are suitable for the specific track or rail design to facilitate proper installation, alignment, and smooth operation.
  • Maintenance and Lubrication: Evaluate the maintenance and lubrication requirements of the track bearings. Consider factors such as the need for regular maintenance, lubrication intervals, and the availability of suitable lubricants. Choose bearings that align with the desired maintenance practices and provide appropriate lubrication options based on the application’s operational demands.
  • Expected Lifespan and Reliability: Determine the desired lifespan and reliability expectations for the track bearings. Consider factors such as the projected operating hours, duty cycles, and the criticality of the application. Select bearings from reputable manufacturers known for producing high-quality, reliable products that align with the expected lifespan and reliability requirements.
  • Cost Considerations: Evaluate the cost-effectiveness of the track bearings. Consider the initial purchase cost as well as the long-term costs associated with maintenance, replacement, and potential downtime. Strive for a balance between the upfront investment and the overall value provided by the bearings in terms of performance, reliability, and longevity.

It is essential to consult with bearing manufacturers or industry experts who can provide guidance and recommendations based on the specific application requirements. By considering these factors and seeking expert advice, you can select the right track bearings that best meet the needs of your particular application.

track bearing

How do track bearings contribute to the precision, accuracy, and reliability of motion control systems?

Track bearings play a crucial role in enhancing the precision, accuracy, and reliability of motion control systems. They provide several key contributions that ensure smooth and consistent linear motion. Here’s a detailed explanation:

  • Precision Guidance: Track bearings offer precise guidance for linear motion systems. They are designed with close tolerances and accurate geometries, allowing for accurate positioning and control of the moving components. This precision guidance ensures that the desired motion is achieved with minimal deviation or error.
  • Smooth and Consistent Motion: By minimizing friction and providing smooth rolling or sliding surfaces, track bearings enable smooth and consistent motion in motion control systems. They reduce the effects of irregularities, misalignments, or vibrations, resulting in smoother operation and improved accuracy.
  • Repeatable Performance: Track bearings provide repeatable performance in motion control systems. They offer consistent and predictable motion characteristics, allowing for precise and repeatable positioning of the moving components. This repeatability is essential in applications that require high accuracy and consistency, such as CNC machining, semiconductor manufacturing, and precision measurement systems.
  • Load Distribution: Track bearings distribute the load evenly along their length, helping to minimize stress concentrations on specific components. This even load distribution improves the overall stability and reliability of the motion control system. It reduces the risk of component failure, deformation, or excessive wear, contributing to enhanced system reliability.
  • Minimized Play and Backlash: Track bearings are designed to minimize play and backlash, which are undesirable movements or clearances between components. Play and backlash can introduce inaccuracies and reduce the precision of motion control systems. Track bearings with tight tolerances and optimized designs help minimize these undesirable effects, ensuring precise and accurate motion.
  • Stiffness and Rigidity: Track bearings provide stiffness and rigidity to the motion control system. They resist deflection and maintain their shape under load, minimizing any unwanted flexing or bending. This stiffness enhances the overall stability and precision of the system, allowing for precise control and accurate motion even under varying loads or external forces.
  • Resistance to Contamination: Track bearings are often equipped with seals or shields to protect against contaminants such as dirt, dust, or liquids. This protection helps maintain the precision and reliability of the motion control system by preventing the ingress of particles that could interfere with the smooth operation of the bearings or cause premature wear and failure.

By incorporating track bearings into motion control systems, industries can benefit from improved precision, accuracy, and reliability. Whether it’s achieving precise positioning, ensuring consistent and repeatable motion, minimizing play and backlash, or providing reliable load distribution, track bearings contribute to the overall performance and integrity of motion control systems.

track bearing

How do track bearings compare to other types of bearings like ball bearings or roller bearings?

Track bearings, ball bearings, and roller bearings are all types of rolling bearings used in various applications. Let’s compare track bearings to ball bearings and roller bearings to understand their similarities and differences:

  • Design and Construction: Track bearings, ball bearings, and roller bearings have different designs and constructions. Track bearings, also known as track rollers or track follower bearings, are designed specifically for guided linear or rotational motion along a track or guide rail. They feature an outer ring with a track surface, an inner ring, rolling elements (such as rollers or needles), and a cage. Ball bearings, on the other hand, have spherical rolling elements (balls) sandwiched between inner and outer rings. Roller bearings, as the name suggests, have cylindrical or tapered rolling elements (rollers) between inner and outer rings.
  • Motion and Load Handling: Track bearings are primarily used for guided motion in track-based systems, while ball bearings and roller bearings are used for general rotational or linear motion. Track bearings are designed to support both radial and axial loads and provide smooth and controlled motion along the track. Ball bearings and roller bearings are also capable of supporting radial and axial loads but are typically used in applications where the motion is not constrained to a specific track or guide rail. Roller bearings, with their larger contact area and higher load-carrying capacity, are often preferred for applications with higher loads.
  • Applications: Track bearings are commonly used in applications such as material handling systems, conveyors, cam mechanisms, automated machinery, construction equipment, and agricultural machinery, where guided motion along a track or rail is required. Ball bearings and roller bearings find applications in a wide range of industries and systems, including electric motors, pumps, automotive applications, industrial machinery, and appliances.
  • Friction and Efficiency: Track bearings, ball bearings, and roller bearings all aim to minimize friction and ensure efficient operation. However, due to their different designs and contact surfaces, they exhibit varying levels of friction. Ball bearings typically have lower friction due to point contact between the balls and the raceways. Roller bearings, especially tapered roller bearings, distribute the load over a larger contact area, resulting in slightly higher friction compared to ball bearings. Track bearings, with their track interface, may have slightly higher friction compared to ball bearings or roller bearings due to the rolling elements’ contact with the track surface.
  • Installation and Maintenance: Track bearings, ball bearings, and roller bearings require proper installation and maintenance for optimal performance and longevity. However, track bearings may require additional attention during installation as they need to be properly aligned with the track or guide rail. Regular lubrication and periodic inspection are essential for all types of bearings to ensure smooth operation and prevent premature failure.

In summary, track bearings, ball bearings, and roller bearings have distinct designs and applications. Track bearings are specialized for guided motion along a track or rail, while ball bearings and roller bearings are more versatile and used in a wide range of rotational or linear motion applications. Each type of bearing has its advantages and considerations in terms of load handling, friction, efficiency, and installation requirements. Selecting the appropriate bearing type depends on the specific application requirements, load conditions, motion characteristics, and environmental factors.

China Best Sales Chrome Steel Miniature V Deep Groove Ball Bearing V624zz V608zz V625zz V604zz 629 V629zz for Guide Rail Track Roller   bearing assemblyChina Best Sales Chrome Steel Miniature V Deep Groove Ball Bearing V624zz V608zz V625zz V604zz 629 V629zz for Guide Rail Track Roller   bearing assembly
editor by CX 2024-03-23

China manufacturer China Professional Linear Bearing Factory /Lm Shaft Motion Ball Bearing/Lm Guide Slide Rail Flange Bearing/Ball Screw/Track Roller Bearing for CNC 3D Printer bearing example

Product Description

Linear Sliding Xihu (West Lake) Dis. Bearing Aluminum SBR TBR Xihu (West Lake) Dis. Rail 35mm Linear Bearing SBR35luu SBR35uu


Cylindrical linear CZPT rail introduction

SBR/tbr cylindrical linear CZPT rail consists of a rail support, an axis(rail), and number of blocks. they are supplied as a unit or as respective components and. all components are standardized to be fully interchangeable.

linear CZPT rail tbr/SBR series with smooth serface, low friction, low noise level, they are widely used in linear motion system. for example, punch, tool grinder, automatic cutting machine, printer, card sorting machine, food packaging machine, other sliding parts on industrial machines.

Our function:
1.highest quality and the most competitive price—–we have our own factory, large production, near the port. ensure cheap price and guaranteed quality.
2. professional—we can almost kinds of linear CZPT rail. diameter 10-60mm, the length can be produced according to your requirement.
3.delivery fast—–goods will be shipped within 1 to 5 working days based on order quantity.
4.best service—–answering emails or solving questions timely. delivery and update information on time. trust, good quality and service are the basis of long-term business.

 

SBR..UU

SBR16UU,SBR20UU,SBR25UU,SBR30UU,SBR35UU,SBR40UU,SBR50UU

SBR..LUU

SBR16LUU,SBR20LUU,SBR25LUU,SBR30LUU,SBR40LUU

TBR..UU

TBR16UU,TBR20UU,TBR25UU,TBR30UU

TBR..LUU

TBR16LUU,TBR20LUU,TBR25LUU,TBR30LUU

SCS..UU

SCS8,SCS10,SCS12,SCS13,SCS16,SCS20,SCS25,SCS30,SCS35,SCS40, SCS50

SCS..LUU

SCS8,SCS10,SCS12,SCS13,SCS16,SCS20,SCS25,SCS30,SCS35,SCS40, SCS50

SC..JUU

SCJ10,SCJ12.SCJ13,SCJ16,SCJ20,SCJ25,SCJ30,SCJ35,SCJ40, SCJ50

SCE

SCE8,SCE10,SCE12,SCE13,SCE16,SCE20,SCE25,SCE30,SCE35,SCE40, SCE50

 

 

PACKAGE

Our packaging is also very variable, the purpose is to meet the needs of different customers.The commonly used packages are as 
follows:
1.Industrial  package
2.Single box /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: Corrosion Resistant, High Temperature, High Speed
Function: Super
Flange Shape: Circular
Shape: Straight
Series: SBR,TBR,
Material: Bearing Steel
Samples:
US$ 1.88/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

track bearing

Can you provide examples of industries and applications where track bearings are frequently used?

Track bearings find extensive use in various industries and applications where smooth and controlled motion along tracks or guide rails is required. Let’s explore some examples of industries and applications where track bearings are frequently used:

  • Material Handling and Conveying: Track bearings are widely employed in material handling and conveying systems, such as conveyor belts, roller conveyors, and overhead cranes. They facilitate the smooth movement of goods, packages, and components along the tracks, ensuring efficient and reliable transportation within warehouses, distribution centers, manufacturing facilities, and airports.
  • Automotive and Transportation: Track bearings are utilized in various automotive applications, including suspension systems, steering systems, and sliding doors. They enable smooth and precise movement of components, contributing to vehicle performance, comfort, and safety. Additionally, track bearings are used in railway applications, such as railcar doors, sliding mechanisms, and track guidance systems.
  • Aerospace and Defense: Track bearings play a crucial role in aerospace and defense applications, including aircraft landing gears, flap systems, and missile launchers. They provide the necessary support, guidance, and load-carrying capacity for critical components, ensuring smooth and controlled motion in demanding operating conditions.
  • Industrial Machinery: Track bearings are commonly found in various industrial machinery and equipment. They are used in machine tools, robotics, printing presses, industrial ovens, and packaging machines, among others. In these applications, track bearings contribute to precise motion control, accurate positioning, and reliable performance of moving components.
  • Construction and Mining: Track bearings are extensively employed in construction and mining equipment, such as excavators, bulldozers, cranes, and drilling machines. They provide support and guidance for the movable parts, allowing efficient and controlled movement in rugged and demanding environments.
  • Medical and Healthcare: Track bearings are utilized in various medical and healthcare applications. They are used in hospital beds, medical imaging equipment, laboratory automation systems, and patient handling devices. Track bearings enable smooth and quiet operation, precise positioning, and patient comfort in these critical healthcare settings.
  • Renewable Energy: Track bearings are employed in renewable energy systems, including solar tracking systems and wind turbine pitch and yaw mechanisms. They enable the precise tracking of solar panels and the controlled adjustment of wind turbine blades, maximizing energy capture and optimizing system performance.

These examples represent just a fraction of the many industries and applications where track bearings are frequently used. The versatility, reliability, and precise motion control provided by track bearings make them a fundamental component in numerous mechanical systems across various sectors.

track bearing

How do track bearings contribute to the precision, accuracy, and reliability of motion control systems?

Track bearings play a crucial role in enhancing the precision, accuracy, and reliability of motion control systems. They provide several key contributions that ensure smooth and consistent linear motion. Here’s a detailed explanation:

  • Precision Guidance: Track bearings offer precise guidance for linear motion systems. They are designed with close tolerances and accurate geometries, allowing for accurate positioning and control of the moving components. This precision guidance ensures that the desired motion is achieved with minimal deviation or error.
  • Smooth and Consistent Motion: By minimizing friction and providing smooth rolling or sliding surfaces, track bearings enable smooth and consistent motion in motion control systems. They reduce the effects of irregularities, misalignments, or vibrations, resulting in smoother operation and improved accuracy.
  • Repeatable Performance: Track bearings provide repeatable performance in motion control systems. They offer consistent and predictable motion characteristics, allowing for precise and repeatable positioning of the moving components. This repeatability is essential in applications that require high accuracy and consistency, such as CNC machining, semiconductor manufacturing, and precision measurement systems.
  • Load Distribution: Track bearings distribute the load evenly along their length, helping to minimize stress concentrations on specific components. This even load distribution improves the overall stability and reliability of the motion control system. It reduces the risk of component failure, deformation, or excessive wear, contributing to enhanced system reliability.
  • Minimized Play and Backlash: Track bearings are designed to minimize play and backlash, which are undesirable movements or clearances between components. Play and backlash can introduce inaccuracies and reduce the precision of motion control systems. Track bearings with tight tolerances and optimized designs help minimize these undesirable effects, ensuring precise and accurate motion.
  • Stiffness and Rigidity: Track bearings provide stiffness and rigidity to the motion control system. They resist deflection and maintain their shape under load, minimizing any unwanted flexing or bending. This stiffness enhances the overall stability and precision of the system, allowing for precise control and accurate motion even under varying loads or external forces.
  • Resistance to Contamination: Track bearings are often equipped with seals or shields to protect against contaminants such as dirt, dust, or liquids. This protection helps maintain the precision and reliability of the motion control system by preventing the ingress of particles that could interfere with the smooth operation of the bearings or cause premature wear and failure.

By incorporating track bearings into motion control systems, industries can benefit from improved precision, accuracy, and reliability. Whether it’s achieving precise positioning, ensuring consistent and repeatable motion, minimizing play and backlash, or providing reliable load distribution, track bearings contribute to the overall performance and integrity of motion control systems.

track bearing

Can you describe the load-carrying capacity and load ratings of track bearings?

Track bearings are designed to withstand and carry various types of loads while maintaining smooth and controlled motion along a track or guide rail. The load-carrying capacity and load ratings of track bearings are crucial factors to consider when selecting the appropriate bearing for a specific application. Let’s delve into these concepts:

Load-Carrying Capacity:

The load-carrying capacity of a track bearing refers to its ability to support and distribute the applied loads without excessive deformation or failure. It is influenced by several factors, including the bearing’s design, materials, and operating conditions. The load-carrying capacity is typically specified in terms of static load capacity and dynamic load capacity.

The static load capacity indicates the maximum load that a track bearing can support without permanent deformation. It is determined by the bearing’s internal geometry, material strength, and the contact area between the rolling elements and raceways. Static loads are those that do not cause relative motion between the bearing and the track, such as when the bearing is stationary or subjected to a constant load.

The dynamic load capacity represents the maximum load that a track bearing can handle while still allowing smooth rolling motion. It takes into account the bearing’s ability to handle both radial and axial loads and considers factors such as the bearing’s internal clearance, lubrication, and operating speed. Dynamic loads are those that cause relative motion between the bearing and the track, such as when the bearing is subjected to varying loads or subjected to motion along the track.

Load Ratings:

Load ratings provide standardized values that indicate the maximum allowable loads for track bearings based on industry standards. These load ratings are commonly provided by bearing manufacturers and help users select the appropriate bearing for their specific application requirements. The two primary load ratings used for track bearings are the radial load rating and the axial load rating.

The radial load rating specifies the maximum radial load that a track bearing can withstand while maintaining proper performance and service life. It is expressed as a static load rating and a dynamic load rating. The static radial load rating indicates the maximum radial load that the bearing can support without permanent deformation, while the dynamic radial load rating represents the maximum radial load that the bearing can handle under typical operating conditions.

The axial load rating indicates the maximum axial load that a track bearing can withstand without excessive deformation or failure. It considers the applied axial force in the direction perpendicular to the track or guide rail. The axial load rating is typically provided as a static load rating and a dynamic load rating.

It’s important to note that load ratings are based on specific operating conditions, such as a certain speed, lubrication, and temperature. It is necessary to consider the actual operating conditions and factors such as shock loads, vibrations, and misalignments when applying load ratings to real-world applications.

By understanding the load-carrying capacity and load ratings of track bearings, engineers and designers can make informed decisions to ensure reliable and safe performance of the bearings in their applications.

China manufacturer China Professional Linear Bearing Factory /Lm Shaft Motion Ball Bearing/Lm Guide Slide Rail Flange Bearing/Ball Screw/Track Roller Bearing for CNC 3D Printer   bearing exampleChina manufacturer China Professional Linear Bearing Factory /Lm Shaft Motion Ball Bearing/Lm Guide Slide Rail Flange Bearing/Ball Screw/Track Roller Bearing for CNC 3D Printer   bearing example
editor by CX 2024-02-20